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u

THE COME!RESSIBLEIAMINAR m~YIAYERwImw TRANSFER

ANDsMALL PREssuREmIENT

By George M. Low

A perturbation method for the calculation of velocity and tempera-
ture profiles and skin-friction and heat-transfer characteristics for
two-dimensional, compressible lsminar boundary layers with heat transfer
and a small arbitrary pressure gradient is presented. The permissible
pressure gradients include those of a form and magnitude usually en-
countered over slender aerodynamic shapes in supersonic flight. The
method applies for any constant Rmndtl number, but results, aside from
special examples, are presented for a Prandtl nuniberof 0.72. For the
case of heat transfer, the w&U temperature is assumed constant.

~

.& A large number of universal functions are given in tabular form,
so that the amount of effort required in a practical.application is
reduced to the arithmetic combination of several tabulated values. The

u computation procedure is summarized in a section entitled “JWIZICA!ITON
OF AN.KLYSIS.”

The combined effects of heat transfer and pressure gradient on
boundary-kyer characteristicsare demonstratedby applying the results
of the analysis to two representative wings.

●
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INTRODUCTION

Interest in the characteristicsof the laminar boundary layer has
increased in recent years because, under certain conditions, the boundary
layer may remain lsminar over Mrge areas of airplanes and missiles.
For example, Van Driest (ref. 1) has shown theoretically that if the
solid boundary is cooled sufficiently, the laminar boundary layer can
be stabilized regardless of Reynolds number at Mach numbers between
1 and9. Sternberg (ref. 2) observed laminar boundary layers at Reynolds
numbers as high as 50x106 in flight tests of the V-2 rocket. Laminar
boundary layers may also be expected in flight at very high altitude
where the density, and,hence the Reynolds number per unit length, wilJ_
he low.

——-__—_ ._ _



2 N/lCATN 3028

Solutions of the compressible laminar-boundary-layerequations for
the special case of zero pressure gradient have been obtained by several
authors. The theory of Chap and Rubesin [ref. 3), for example, pre-
sents a very simple method for calculatingboundary-layer characteristics
over a flat plate with arbitrary heat transfer. The more recent, and
in general more exact, studies of Klunker and McLean (refs. 4 and 5),
Van Driest (ref. 6), Young and Janssen (ref. 7), and Moore (ref. 8}
have demonstrated that the theory of Cha@an and Rubesin yields excellent
results for reasonably low ambient air temperatures at Mach numbers up
to about 5.

Solutions for the more general case of arbitrary heat transfer and
arbitrary pressure gradient are stilJ in an early stage of development.
Tani, in a little known paper (ref. 9), wed a perturbation procedure
to obtain direct solutions of the boundary-layer differential equations
with a Fallmer-Sksm type external velocity distribution (ue . Xm) and
heat transfer. Results are easily obtainable from tibulated functions,
but are Mmited to a Prandtl number of 1, small Mach numbers, and small
rates of heat transfer. Furthermore, the Falkner-Skan type of external
velocity distribution is not appropriate for supersonic flow over thin
wings. Ginzel (ref. 10), Kalikhman (ref. n), and Libby and Morduchow
(extension of ref. 12) have obtained solutions of the ccnnpressible
laminar-boundary-layerequations by an extended Po~usen method. How-
ever, the accuracy of the PoKIAausen method under conditions of heat
transfer at high speeds has not been determined. In addition, the smount
of work required in a particular application of references 10 and 11 is
prohibitive because the simultaneous numerical solution of two differen-
tial equations is required. Libby and Morduchow avoid this difficulty by
the additional assumption that certain variable quantities remain constant
over the entire length of boundary-layer development.

The puqnse of the present report is to present a method of solu-
tion developed at the NACA Lewis laboratory that is free of many of the
limitations of references 9 to 12. An accurate method for calculating
velocity and temperature profiles and sMn-friction and heat-transfer
characteristicsfor the compressible laminar boundary layer with heat
transfer and a small pressure gradient is derived. The permissible
pressure gradient maybe of a form and magnitude usuald.yencountered
over thin aerodynamic shapes in supersonic flight. The solution is
obtained by a method of perturbation on the flat-plate solution of
Chapnan and Fhbesinj it constitutes the first two terms of a Maclaurin
series expansion in terms of the free-stream velocity gradient parameter.
The method involves the direct solution of the boundary-layer differen-
tial equations. Although the theory applies for any’constant Prandtl
nuniber,tabulated results presented in this report apply, in generaly
for a Prandtl nuuiberof 0.72. For the case of heat transfer, results
are limited to an isothermal wall.

—— —.—
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Solutions of the first-order perturbation eqwtions are presented
in tabular form, so that the amount of effort reqyired in a particular
application is reduced to the arithmetic combination of several tabulated
values. A section of the report entitled “APFLICATIOIVOF ANALYSIS” is
included in order to facilitate the application of results in practicsL
applications.

The following
in addition to the

(1] The ratio

AMUMFTIONS AND LIMIWONS

simplifying assumptions and limitations are imposed
usual boundary-layer assumptions:

of the velocity at the outer edge of the boundary
layer ~ to a reference velocity ur canbe represented by

%—= l+&a@2J
%?

(1)

where the repeated index N indicates a summation over several values
of N. (All symbol.sused in this report are defined inappenti A.)
In equation (1) the quantity aN# represents the shape of the deviation

of Ue from a constant value, while s represents the magnitude of

this deviation. The quantity & is assumed small as compsred with
unity, whereas the quantity aNxN is of normal order of magnitude.

This type of external velocity distribution is capsble of representing
in form and magnitude those encountered over thin aerodynamic shapes at
Mach numbers greater than 1.

(2) The temperature of the solid boundary is constant under condi-
tions of heat transfer. (Under conditions of zero heat transfer the
wall temperature will be a calculated function of the pressure dis-
tribution.)

(3) The viscosity and temperature are related linearly by the
folLowing expression:

(2)

Chapan and Rubesin have shown that solutions of the boundary-layer
equations based on equation (2) agree well with more exact solutions
for flat-plate flows at lhch nunibersless than 5 if the constant C is
detemnined by matching equation (2) with Sutherland’s relation at the
solid boundary

—-..——— —— —— -— —— — —. —.
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(3) -

This assmnption should also be reasonable for flows with slight stream-
wise pressure gradients, especially when the waU temperature is constant.
For a nonisothermal wall an average wall temperature should be used in
equation (3)J as suggested in reference 3.

(4) The Rrandtl number and specific heat are constant throughout
~

the boundary layer.
N

The restriction im~sedby this assumption is not
great because both Pr and ~ vary only slightly at moderate tempera-

tures. A Prandtl number of 0.72 was used in all calculations.

GOVERNING EQUATIONS

Differential eauations and boun~ conditions. - The eauations
governing the stea& laminar

.
flow of -

thin boundary layer are the momentum
a viscous compressible fluid in a
equations

the equation of continuity

the energy equation

p Cp(utx +

and the equation of state

?=-$
%=

& + * (WJy (4a)

o (4b) “

,

(pu)x + (pY)y = o (5)

tiy) = Upx + (~y)y + V(%)2 (6)

P = PRt

The following boundary conditions are
‘energy equations:

(7)

tipsed on the momentum and

—— .— _
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U(x,o) = o

TT(x,o) = o

t(x,O) = ~ (heat

ty(x,O) = O (zero

transfer)

heat transfer)

At the outer edge of the boundary layer,
related by the Bernoulli equation, which is

ape due
_.-peue —
dx (3x

The energy equation that applies at the outer
is

2
CP T = Cpte + ~

5

1
U(x,+ =Ue
t(x,=) = te

(8)

velocity and pressure ar”e

(9)

edge of the boundary layer

(10)

Transformation of Howarth. - In reference 13 Howarth introduced a
transformation which, when applied to the momentum and ener~ equations,
yields equations similar in formto the incompressible-boundary-layer
equations. First, it is convenient to introduce the dimensionless
variables

P = P/Pr ti= U/Ur

t% = t/tr V*= VI% 1 (ILP*=P/Pr P*= Plh

Howarth’s transformation proceeds as follows: The independent variables
x and y are related to the variables x and n according to the
following transformation:

X3X
1

=-i’q%j (12)

where n distorts the scale in the direction normal to the surface.
The derivatives with respect to x and y canbe expressed as

.

. .——. ——.—— .-———. .—— -—— — — .——~—
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Equation (5) is satisfied by a stream function defined as follows:

p* u* = *Y

p* +=-*x

The stresm function $(x,y) can be related to a transformed
function q(x,n) by

V(%Y) = e Q(x,n)

The velocity components now become

Sulmtitution of
(4a] yields the

The

(14)

u= Ur

(UrI@iF 9X .
-v=-

P*

(1.5)

equations (2)j (7)) (9)> and (12) to (E) into equation
momentum equation in the transformed (xjn) plane

energy equation in the

~n&~ - Cpxtg

x,n-plane becomes

Vr
-—
Ur FY

%=(r-mg&frl-

1
~ +(y-l) t* Qn (17)

———
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The following boundary conditions apply to equations (16) and (17):

Q(xjo) = o Qn(x,=) = Ug

q)n(x,o) = o

t*(x,O) = t?$(heat transfer)

~(x,O) = O (zero heat transfer)

t*(x,=) = tg

HmTmwTIoN ANALYSIS

Expansion of momentum and energy equations in powers of e. - For
the special case of u~ = 1 (zero pressure @adient), equations (16)
and (17) become identical to the momentum and energy equations solved
by Cha_ and Rubesin. It therefore appears logical to let @ differ
from unity by a small amount in order to obtain a perturbation solution
for flows with small pressure ~dients. As discussed under ASSUMPMONS
AND LIMITATIONS, the external velocity at the outer edge of the boundary
layer is taken to be of the following form:

*=
‘e l+&aN# (1)

Substitution of equations (1) and (7) into equations (9) and (10) and
elimination of higher-order terms yield:

(18)

and

Within the boundary layer the stream function and temperature are
replaced by their Maclaurin series expansions in terms of the velocity
gradient parameter G:

p(x)n,e) = @(xjn) + &aN5N(x}n) + # ~=~(x,n) + . . . (20)

t*(xjnj&) = ~(x,n) + &aN~N(x,n) + &2 am ~~(x,n) + . . . (21)

——.——.—— ———_— -—.—.—-——. .—



8 NACA TN 3028

A sequence of momentum and ener~ equations is obtained by substitution
of equations (1) and (18) to (21) into equations (16) and (17), and by
equating coefficients of like powers of 6. The zero-order equations,
obtained by equating coefficients of (e)”, are:

and

F(x,o) = Fn(x,o) = o @n(x,=) = 1

(22)

(23)

%(x,O) = ~ (heat transfer)

%JX,O) = O (zero heat transfer)

Z(X,=) = 1

Equating coefficients of s yields the first-order equations:

GN(X,O) +Jx,o) = o

and

=_

%$n ‘x

~ (y-l)‘2%
‘~(x,o} = o

=
‘?m(x,+ = #

@x ‘% &r ‘%nn-—

2 ~t-n+(y-l)z%[ 1Fn (25)

The higher-order equations are obtained by equating coefficien:s .
of 62, &3, and SO forth. If it is assumed that the functions ~, ~, @,

.
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and so forth, and the functions ;, t, t, and so forth, are of the same
order of magnitude, then, since e is pstulated to be small, all
additional contributions will be of second or higher order and hence
may be neglected in a first-order treatment. Further justification for
neglecting the higher-order equations comes from reference 14, where it

is shown that for i~compresgible flow the function ~ is numerically
much smaller than (p and q. The second-Qrder terms therefore should
contribute very little to the solution of the boundary-k.yer equations
for flows with small pressure gradients.

The permissible magnitude of the pressure gradient depends largely
on the length of run over which it acts. For example, a very small
pressure gradient can cause laminar separation if it acts over a large
distance. The present method can be applied only if all the deviations
in boundary-layer characteristics caused by the pressure gadient are
small. ,

The only dependent variable appearing in equation (22) is ~, so
that the solution of this equation is independent of all.following
equations. l?uthermore,.each succeeding equation involves only one
new dependent variable, so that each equation can be solved in principle
once the preceding equations have been solved. Equations (22) to (25)
still contain two independent variables, however, and require further
reduction to make them smenable to solution.

Solution of zero-order equation. - The zero-order equations may be
transformed to ordinary differential equations by introduction of the
Blasius characteristic variable ~:

The stream function T(x,n) is related to a new function f(q) as
follows:

r

Vr x
~(x,n) = ~ f(n) (27)

The temperature in the x,n-coordinate system is equal to the tempera-
ture in the q-system

Z(x,n) = ;(q) (28)

With the aidof equations (26), (27), and (28), equations (22) and (23)
can be written

f‘“ + ff” = o (29)
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where the primes indicate differentiationwith respect to q. The
boundary conditions of f and t are

f(o) = o f’(co]= 2

f’(o) = o

3(0) = %* or Z’(O) = O

(30)

“Equation(29) is the well-known Blasius equation which has been solved
by several investigators. In order to eliminate ~ as a parameter in
the solution of equation (30), this equation is split into two parts in
the following manner:

~(q) = l+~~2r(q) +Ks(v) (31)

where r(~) and s(q) satisfy the following equations:

(32)

s“ +Rfs’=o (33)

The following boundary conditions are applied to equations (32) and (33):

r’(0) = O r(~) = O

s’(o) = - [f’’(o)]~ S(co)= o

Although the solution of equations (32) and (33) can be written in terms
of quadrature, as shown in reference 3, the numerical solution of the
differential equations was found more convenient. Numerical solutions,
as discussed in appendix B, were made by Lynn U. Albers.

The functions f“(0), r(0), s(O), md s’(0) are listed in
lxibleIj all other functions resulting from the solution of the zero-
order equations can be found in table II. The constant K (eq. (31))
is related to the rate of heat transfer and hence to the wall tempera-
ture. Its value is determined by solving equation (31) at q = O.
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.

(34)

%7where the wall temperature ratio ‘~ = ~ is, in general, prescribed.
r

For the case of zero heat transfer, K vanishes.

Solution of first-order equations. - The first-order momentum and
energy equations can also be transformed to ordinary differential equa-
tions with the aid of the Blasius variable together with the following
functions:

(35)

and .

\(x,n) = - (T-1) &xNhN(T) (zero heat transfer) (36)

~(x,n) = - (T-1) &XNH~~) (heat transfer) (37)

Equations (24) and (25) are now written

g; ‘f~-2Nf’~+(2N+ l)f”gN

and

% + m%i- 2R ‘f’hN

[

=R4N+2

GiiipJ 1~’+f“ g; -~Nf~’ - 2Nf’~

(38)

(39)

The function ~(v) satisfies the same equation as is satisfied by

hN(v) (eq. (41)), but is subject to different boundary conditions. The

boundary conditions are

-. ..._.——— . .— —
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gn(o) = o gfi(co)= 1

q(o) = o

q(o) = o ~(=) = 1 (zero heat transfer)

HN(0) = O HN(m) = 1 (heat transfer)

The solution of equation (38) can be obtained in closed form for

the special cases of N = - ~ (ref. 15) and N = O (see appendix

In the general case, however, the equation was solved numerically.
order to obtain a numerical solution which applies over a range of
numbers and heat-transfer rates, the parameters ~ and K were

eliminated from equation (38) by splitting the function g into a
linear coniblnationof three

f3~=

independent functions:

where the three new functions satisfy the following equations:

~ + f% - 2Nff~ + (2N + 1) f“gm=-4N

2Nf’g& + (2N+ 1) f“gw=~ [flf” - 4(y-l)r]

fg~ - 2Nf’g~ + (2N+ 1) f“g~= - 4NS

13@) = gfii(o)= o (i = 1,2,3)

*(=’) = 1 gfiz(=’)= g~(co) = o

c).

In
Mach

(40)

(41)

(42)

(43)

The first-order ener~ equation can be solved in closed form for N = - ~
(ref. 15) and N = O (appendix C). For zero heat transfer, a closed
form solution of equation (39) for Pr = 1 can also be obtained for all
values of N, as shown in appendix D. For other cases the solution
of equation (39) is again found numerically after several parameters
have been eliminated by replacing the equation by the following system:

hN =h Nl+%hN2 (44)

.

.
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where

~+ti~-2~Nf’ ~ = 1% p2N + l)~r’

%2 + m %2 - 2fi N%2

h~i(0) = O h~(=) = 1 ‘N2(rn)= O

Equations (44) to (46) apply for the case of zero
flows with heat transfer, the following equations

HN=~+&HN2+ KE~+~HN4+

‘“?

1+f“g.& - 2Nfl

1N(T-l)rf’

(i = 1,2)

X5

(45)

(46)

heat transfer. For
are obtained:

(47)

The functions ~(TI) ~d

satisfied by ~(TI) -d

conditions. The remaining
lowing equations:

~2(TI) satis~thes=eeq~tiomorae

~2(7), but~e subject to modified boundary

functions in equation (47) satisfy the fol-

‘& [ (- )+PrfH&2RNf’~=l?r (2N +1) = ~ ++r’g

~fs ‘fflg~ - ~ - 12Nf?S (48)

~4+FrfHfi4- 2Rr Nf’HN4= =[2H+,)(.)] (4,)

H~+fifHfi5-

[ f:s’]’ (5C))
2~ Nf’HN~ = Pr (2N + 1)

HNi(0) = O H~(e) = 1 (i = 1,2,3,4,5)

%.&=) = ~(”) = %4(=) = H-#) = o

The elimination of ~ and K as ~eters in the first-order

equations has thus yielded ten equations for each value of N. These

.———.—- . ...—..— .. .— —.—
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equations were solved numerically for N = 1, 2, and 3, as discussed in
appendix B. The functions gfi,which represent the first-order velocity

corrections, and hN and HNj which represent the first-order tempera-

ture corrections, are presented graphically in figures 1, 2, and 3.
Tabulated results of all solutions of the first-order equations can be
found in tables III, IV, and V. Initial values are also tabulated in
table I.

.

The solutions of the zero- and first-order equations can now be al
w

combined to yield velocity and temperature profiles, sldn-friction and m
(u

heat-transfer coefficients, recovery factors, and displacement thickness.

BOUNDARY-LAYER CHARACTERISTICS

Velocity and temperature profiles. - The dimensionless velocity u*
is related to the characteristic variable TI through equations (15),
(20), (27), and (35) in the following manner:

From
file

; f’(q) +u*g —

equations (21], (28), (31), and
can be expressed in terms of TI

& aN~ gfi(?) (51)

(36) or (37), the temperature pro-
as

(52)

for the case of zero heat transfer. For flows with arbitrary heat
transfer, the following expression applies:

y-l
t*sl+Ks(V)+~ & ~(~) - 2& @HN(v)l (53)

Equations (51), (52),
ture profiles as functions
(x,y-) plane, according to

Y=

and (53) represent the velocity and tem~ra-
Of q. The transformation to the physical
equations (12) and (26), is

(54)

The value of t* can be obtained from equations (52) or (53), while
p* is givenby equation (18). Thus, for zero heat transfer,
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and for arbitrary rates of

.r{r

Vr xc
yE27 1+

r

}

(y-l) 6 ~xN ~ ~@_l)

Skin friction and heat transfer. - The shea~
in the boundary layer can be obtained from equations

d

(56)

stress at a point

(2), (B), and (15):

(57)

In terms of the Bla.siusvariable q and after substitution of equa-
tion (18) for p*, equation (57) becomes

Local and average sldn-friction coefficients are obtained from the wall
shearing stress and the following respective definitions:

(59)

and

A local

‘cW
cf.—

1~Pr<

x

%’=1 1 s‘w dx (60)
~pru:x

o

skin-friction parameter is obtained from equations (58) and (59):

[{

Re 1
Cf ~E~

$ (]}
f“(o) +2&a#’J [y(o) -: f“ o (61)

. The average friction drag parsmeter, obtained from equations (58) and
(60), is

,

. . —————— — —.
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Fc&- = f“(o) +
::< p -: * f“(o)]

The local rate of heat transfer from the surface is given by

A dimensionless heat-trsmsfer parameter can now be written

[
(T-1)# &# Hfi(0)+ 1)-Ks’(O)

2(T-1)

where the dimensionless adiabatic wall temperature is

(62)

.,

.

(63]

as follows:

(64)
.

.

(65)

Temperature recovery factor. - The temperature recovery factor is
derived from equations (19) and (65):

t$w - tg

‘R=@-t~ [ 1Sr(0) + 2E a~ 1 - hN(0) - r(0) (66)

It is evident from the computed results that h~(o) varies very little

with N and is approximately equal to 1 - r(0). With the aid of equa-
tion (4+4),equation (66) is therefore reduced to the following:

Jj’R9r(()) - 2& a#N#hN2(o) (67)

Displacement thiclmess. - The boundary-layer displacement thickness
is, by definition,

.
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With the appropriate expressions for p*, t*, and u*, equation (69)
becomes, for flows with heat transfer,

(68)

(69)

Integration of equation (70) yields, for

For the

by ~.

and the

1.1o94 (T-1) ~] + & a~N [~ + (T-I)

case of zero heat transfer K will vanish

4.0218 K +

(70)

(71)

and ~ is replaced

The relation between the functions appearing in equation (71)

functions tabulated in table VI is:

%=%+@ N2+%E5

%=%KL+%%2

#
~’~+M~~2+K%+$%4+$%

APPLICATION OF ANALYSIS

Before the results of the previous section may be applied it is
necessary to determine the quantity e , the coefficients aN~ and the

reference conditions. The quantities & and ~, which represent the

~,

—.——.—— —— ——-—___ ___
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magnitude and form,
are determined from
ments. Because the

NACA TN 3028

respectively, of the external velocity distribution,
potential-flow theory or from experimental measure-
results of this reprt apply primarily to the flow

over thin two-dimensionalwings at Mach numbers greater than 1, & and .

aN as obtained by linearized theory (ref. 16) will be presented herein.

It is assumed that the coordinates of a wing section are known and can
be fitted by a ~lynomial of fourth or lesser de~ee:

Y = blx + b#2 + b3p + b4x4 (72) ~
N

The values of &, aN, and ~ are obtained by matching the expression

for the velocity distribution obtained from linearized theory with
equation (l):

‘e— =-
U 1 + &(alx + a~2 + ~~)
r

-2b9

‘=4?5

(1)

.

(73)

If the velocity distribution over the wing were known experimentally, the
starting pint of the calculation would be equation (l), with ~, .s,

and aN determinedly fitting a polynomial to the measured velocities.

If, in a particular application, ~ or ~ is much smaller than 1,

then that term need not be included in the solution.

The reference Mach number and temperature are obtained from equa-
tions (10) and (73):

(J

~2%2

‘=’*

(74)
.

—. — ——— ..—- — _—_ _______ __ ___ ____ _
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.

The results of the analysis will now be summarized as they are
needed in a particular application. In the following equations the
functions #(v), hn(~), and Hn(TI) frequmtly appear. They are

related to the tabulated functions in the following manner:

(75)

The constant K is related to the given wall temperature for flows
with arbitrary rates of heat transfer:

{

1 % ~ T-1 2
K=——-

}

- ~ ~ r(0) (34)
s(o) tr

\
where s(O) and
transfer, K= O.)

The velocity

r(0) appear in table I; (For flows with zero heat

profile is given by

(51)

where the repeated index N
N. The temperature profile,

t T-1
~=1+ 2

indicates a summation over all values of
for zero heat transfer, is

and for flows with heat transfer, is

t
q= [l+=(~)+%% ‘(~)- 12E~~HN(v)

(52)

(53)

.
..

. ..———— — —
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These profiles can be obtained in terms of the physical variable y by
the following relations between q and y: (a) for zero heat transfer,

(b) for arbitrary rates of heat transfer,

me functions f, r> and s appear fi table II. me ~ctio~ g
appear in table ~; h, in table IVj and H, in table V.

The constant C is defined by

L~ (tr + 216° R)
c =

q tw + 216° R)

(56)

where ~ is @ven for flows with heat transfer, while for zero heat

transfer a mean value of the adiabatic wall temperature is used. The
adiabatic _ temperature is

The temperature recovery factor is

N< hN2(@FR= r(0) - 26%x

(3)

(65)

(67)

The following results were found for local and average skin-friction
coefficients and for a heat-transfer pa?nameter:

.

.

— —.
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where

baw

All initial values [f’’(O),etc.]
placement thickness for flows with
given by

—.

Ct; x

.* ).$%

are tabulated in table I. The dis-
arbitrary heat-transfer rates is

For flows with zero heat transfer, K will vanish and ~ is replacedby

~ in the last equation. (Values of ~> ~, md ~ canbe found in

table VI.)

The results of this analysis are not necessarily limited to the
integral values of N for which calculations were made. Interpolation
of the results presented in the tables wiIl yield valid
values of N. Values for N = O are included in order
this interpolation (see appendix C and table I).

The equations presented in this section apply slso
flows. For this special case, & = O and the reference

results for other
to facilitate

for flat-plate
conditions are

equal to the undisturbed free-stream conditions.

DISCUSSION OF EXAMPLES

The results of the previous section were applied
tive wings in order to determine the combined effects
pressure gradient on boundary-layer characteristics.
views of the forward prtion of these wings are shown

to two representa-
of heat transfer and
Cross-sectional
in figure 4. The

—.— —..—
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first of the two wings has a constant adverse pressure gradient, while
the second has a constant favorable pressure gradient. A maximum thick-
ness ratio of 0.05 and a free-stresm Mach number of 3 were chosen for .

the wing segnents of both examples. The velocity and temperature dis-
tributions at the outer edge of the boundary layer are shown in figure 5.

The local sldn-friction parsmeter cf- for both representative
wings, computed by the present method, is presented in figure 6. The

effect of pressure gradient in the absence of heat transfer [:)= o]

is to decrease slslmfriction for flows with adverse pressure gradients,
and to increase skin friction for flows tith favorable gradients. (For
flows with zero pressure ~dients, cf~~C= 0.664 for all values of

x as indicated by a dashed line in,the figure.) The effects of pressure
gradient are accentuated by adding heat to the boundary layer. For the
present exsmples, the aforementioned decrease and increase in sldn fric-
tion is doubled when the wall is heated to approximately four times the
ambient air temperature. fificient cooling at the wall, on the other
hand, a~ears to reverse the trend of the pressure gradient alone. Thus,
for a wall temperature approximately equal to one-fourth the ambient air
temperature, there is a slight increase in sldn friction for flows with
adverse pressure gradients whereas there is a decrease in the case of
favorable pressure gradients.
w, as shown in figure 7,

The average friction drag parameter
exhibits the same trends as the local

skin friction.

The friction-drag parameter ~~~ is useful because it applies

at all flight altitudes, and the actual velocity, density, and tempera-
ture need not be specified a priori. On the other hand, It is a mis-
leading parameter, because the viscosity-temperat~ dependence factor
C, which is a function of the wall temperature ratio, is affected by
the rate of heat transfer at thawall. For this reason, the average
friction drag coefficient multiplied by @ was found for the two
representative wings at conditions existing at 35,000 feet, as shown in
figure 8. The rate of change of friction drag along the surface is
nearly the same as was shown in figure 7. The relative magnitudes of
the friction drag curves are altered, however, so that the highest drag
is found for the cooling case, while the lowest drag is obtained with
the hot wall, regardless of the type of pressure gradient.

The heat-transfer Brameter Nu/-/= for the two representative
wings is plotted in figure 9. The local rate of heat transfer was found
to increase along the wing when the pressure gradient and wall tempera-
ture were such that the skin friction decreased and vice versa.

The temperature recovery factor, as plotted in figure 10, was found
to vary slightly as a result of the pressure gradient. The variation is
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of the same order of magnitude as the pressure gradient, and hence a
much larger change might be expected for larger pressure gradients.
On the other hand, the variable term in the expression for the recovery
factor (eq. (67)) is proportional to the square of the lkch number and
would be unimportant at low speeds. It is therefore not surprising
that recovery factors obtained by the present method do not agree with
those obtained in reference 17, where the variation of fluid properties
was neglected.

Velocity profiles at the midchord pint (x= 1) of the two wings
are presented in figure 11. The effect of heat transfer on the local
velocity in the boundary layer is seen to be quite large - there is a
marked thinning of the boundary layer when heat is extracted and a
thickening when heat is added. Although the local velocity and its
first derivative are altered only slightly because of the pressure
gradient, the local.curvature of the profiles appears to be affected to
a greater extent. In particular, the profiles for zero heat transfer
and a hot wall have an inflection point when the pressure gradient is
adverse; whereas no inflection point is evident when the pressure
gradient is favorable, even when the wall temperature is four times
the ambient air temperature. In general, a velocity profile without
an inflection point indicates greater laminar stability than one having
an inflection point. (The shape of the temperature profile, however,
also affects the criterion of stability.)

Although the local velocity near the outer edge of the boundary
layer did not exceed the free-stream velocity, as discussed in reference
18, the functions g’(~) are of a form indicating that such an over-
shoot may exist for slightly larger pressure gradients. (See fig. 1.)

Temperature profiles for the example wings are plotted in figure 12.
These profiles do not differ greatly with the two different pressure
gradients. The effect of heat transfer is quite large, however, as is
evident from a comparison of the extremely thin profiles when the wall
temperature ratio is 0.25 with the relatively thick profiles when this
ratio is 4.

The ratio of the displacement thiclmess along the example ~ngs 5*
to the displacement thictiess along an equivalent flat plate ~ is

plotted in figure 3.3. The displacement thiclmess is found to be less
than the flat plate value for the adverse pressure gradient and ~eater
for the favorable pressure gxadient. This behavior is opposite to
the trend found for incompressible flow and can be explained as fo120ws:
The ratio of displacement thiclmesses is found to be

&f=

F
22+l+~hf&aN

syN [~+(Fl)%%]
(76)

P 1.72 + 4.02 K + (T-1)(1.~) ~
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For incompressible flow and zero heat transfer, equation (76) reduces to .

- 2.6 & aNxN

E=l

In a favorable gradient (&aN# positive), 5*/~

equation (77) decreases; whereas the ratio increases
~dient. This well-known thinning or thickening of

as

in

(77) -

expressedby

an adverse
the boundary layer

is essentially an effect of the change in local Reynolds number caused
by the change in the external velocity.

As the Mach number is increased, however, the term ~<Ga#

in equation (76) becomes of im~rtance. TMs term is related to the -
change in density at the outer edge of the boundary layer. Its sig-
nificance maybe qualitatively determined by supposing for the moment
that viscosity maybe neglected andby consideration of the two-
dime~ional compressible vorticity trans~rt equation for an inviscid
fluid

(78)

This expression shows that the vorticity changes in the same sense as
the density. In a favorsble pressure gradient, therefore, the vorticity
will decrease along the wing because the density decreases along the
wing. A decrease of vorticity in the boundary layer tends to thicken
this layer.

If the complete equation for a viscous fluid is considered, there
may be two opposing effects which occur at high Mach numbers: The
effect of a favorable pressure gradient on Reynolds number (and hence
viscosity) tends to thin the boundary layer; at the same time, the effect
of the fawrable pressure gradient on the vorticity directly tends to
thicken the boundary layer. (A similar argument applies to adverse pres-
sure gradients.) At a sufficiently high Mach number this second effect
will predominate, as was found in the case of the present examples. For
the case of constant pressure gradients and zero heat transfer, it can
be shown that the aforementioned reversal of trends in the functian
5*/6;p occurs at a Mach number of 1.76.

If the Mach number is further increased, the thickening or thinning
of the boundary layer will also affect the slope of the velocity profiles
at the wall and hence the skin friction. For smsXl constant pressure
gradients and zero heat transfer, the sktn friction trends are found
to reverse at a Mach nuniberof 4.71.
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‘Theeffect of Prandtl number on the local frict~.ondrag parameter
over the wing with the adverse pressure gradient is shown in figure 14.
At midchord, a Frandtl number of 1 yields a friction drag coefficient
4 percent lower than a Ikandtl number of 0.72 when the wall.is insulated.
A solution for a Prandtl nwiber of 1 for flows with heat transfer was
not obtained, but it is expected that the effect would be considerably
larger than the 4 percent found for flows.with zero heat”transfer.

As a check on the accuracy of the present method, the solution
for fiandtl number 1 and zero heat transfer was compared with an exact
solutiou of Howarth (refs. X3 and 14), which applies even at pressure
gradients as large as required for separation. At the midchord station
the local friction drag parsmeter agrees within 0.7 percent with that
obtained by Howarth.

CONCLUDING

A method for the calculation of compressible lsminar boundary layer
characteristics for flows with heat transfer and small arbitrary pressure
gradients is presented. This method was applied to the flow over two
representative wings - one with a constant adverse pressure gradient, “
the other with a constant favorable pressure gradient. The investiga-
tion led to the following conclusions: It was found thdt the deviations
in skin friction caused by the pressure gradient were magnified when
the wall was heated and reduced when the wall was cooled. ‘Large amounts
of cooling were found to reverse the rate of change of skin friction
along the wing caused by a pressue gradient alone.

Local rates of heat transfer were found to vary in Mrect o~si-
tion to the sldn friction: If the pressure gradient was such that the
shearing stress decreased along the wing, then the heat-transfer rate
increased, and vice versa.

Temperature recovery factors were found to be affected by the pres-
sure gradient. The percentage change in recovery factor along the wing
was somewhat smaller thsn the percentage change in the external velocity.

The displacement thickness at a lkch pumber of 3 was found to be
greater than the displacement thiclmess of an equivalent flat plate
when the pressure gradient is favorable and less than the flat plate
displacement thickness for the adverse pressure gradient. This result
is opposite to the trend found at low speeds.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, August 19, 1953
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APPEND- A

SYMMILS

The following symbols are used in this

‘l+Y “““

a~

%

~l>bz) “ ● ●

c

%

Cf

.
%

FR

f

G

13

H

h

K.

k

M

N

Nu

n

Pr

arbitrary constants (eq. (C2))

report:

a measure of the shape of the external velocity distribution

function appearing in equation (71)

arbitrary constants (eq. (76))

constant of proportionality in viscosity-temperaturerelation

1
average friction drag coefficient= ,

9 r =W
ax

~~r4xJo

=W
local friction drag coefficient= ~

~Pr$

specific heat at constant pressure

temperature recovery factor

solution of zero-order momentum equation

function defined in equations (C4.)and (C7)

solution of first-order momentum equation

heat transfersolution of first-order energy equation with

solution of first-order energy equation without heat transfer

factor describing heatitransfer conditions (eq. (34))

thermal conductivity

Mach number

~nent fi free-stre~ velocity ~stribution~ (u:= 1 + &aNxN)
C+X*

7Nusselt number = ~ ‘~ ~

transformed variable

Prandtl nuniber= P ~k
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P

q

R

Re

r

s

s

T

t

u

v

x

Y

Y

%

% }

.T

8*

e

I

e

P

v

E

static pressure

local rate of heat transfer

gas constant

Reynolds number = % ‘Ivr

solution of zero-order

Sutherlandts constant

solution of zero-order

total temperature

static temperature

ener~ equation

ener~ equation

velocity in x-direction

velocity in y-direction

distance along surface measured from leading edge

normal coordinate of surface

distance from surface measured perpendicular to surface

functions appearing in equation (71)

ratio of specific heats

displacement thickness

small quantity
tribution at

characteristic

dummy variable

coefficient of

a measure of magnitude of velocity dis-
edge of boundary layer

Wriable definedby equation (26)

viscosity

kinematic viscosity= @

dumy variable

—— —. —. _—-
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P mass density

T shearing stress

.

9 transformed stream function

v stream function

Q

Subscripts:

aw adiabatic wall

e conditions at outer edge of boundary layer

FP equivalent flat-plate value

r reference condition

w cond.itiom at wall or surface

w undisturbed free-stream condition

x,y,n partial differentiationwith respect to x, y, or n

M value of function corresponding to given value of M

N value of function corres~nding to given value of N

Superscripts:

A bar

dimensionless quantities definedby

differentiation

over a quantity

with respect to q

Special Notation

indicates the order
(A single bar signifies a zero-order quantity,

equation (n)

of approximation.
double bar signifies a

first-order qmtity, etc.)

L

The symbol I preceding a

zero to q:

[

for example, Ir(rI)

\ A repeated index N appearing on a and one or more ther symbols

1
indicates sumation: [1 +e a~NS 1 + G(alx + a2x2+ . . .).

quantity indicates integration from
7

=
1]

r.(~)~ .

0

—.—— . _ . —. _ .-
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APPENDIX B

NUMERICAL SOLUTION OF D~ EQUATIONS

By Lyon U. Albers

Each of the ordinary differential equations for f, r, s, g, h, and
H with its associated boundary conditions at zero and infinity con.
stitutes a two-pint boundary value problem. With the exception of the
Blasius equation all equations are linear, and the principle of super-
pxitions of any two solutions maybe used to satisfy the boundary
conditions at infinity. Usually, two solutions close to the correct
one were used in the final combination in order to minimize round-off
errcrs. All integrations were performed on the IBM Card-FYogrammed
Electronic Calculator. The combination of solutions and rounding to
four decimal places was accomplished on the IEM Type 604 Calculating
Funch by using general purpose floating-pint control panels.

The integration technique will be described for the g problem,
but it willbe applicable to all the other problems with slight modifi-
cations. If g’”(q) is given at five values of ~, a fourth-degree
polynomial in v may be passed through the set of values; and if g,
g’, and g“ are known at the fifth ~int, the polynomial representa-
tion of g’” may be integrated to yield g, gl, and g“ at the next
(sixth) point. These quantities may then be substituted in the dif-
ferential equation (41) to yield g’” at the sixth pint. Thus, by
using the five previous pints, the integration may be extended one
step at a time.

The integration was initiated with an assumed trial value of g“(0)
and a value of g’”(0) calculated from the equation. This value of
g“’(0) was also used as a first estimate of g’” at the next four
points. The fourth-degree plynomial representing g’” over this range
was then integrated to yield g, gl, and g“ at the second point.
Substitution in the equation then yielded a better estimate of g’” at
the second point. Integration of the fourth-degree polynomial rep-
resentation of g’” from zero to successive points was alternated with
substitution in the equation to improve values of g“’ in an iterative
fashion until convergence was obtained at the five initial points.

It was found that when g’ was close to its boundary value at
infinity, the regular integration process encountered oscillations in
the function g’”. To avoid this phenomenon, a procedure analogous to
the starting procedure was used in an iterative manner. This smoothing
process was used from q = 3.4 on. Integration was carried to a point
which would yield four-decimal-pint accuracy in the value of g“(0)
and in the g’ and g“ data.
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All integrations were performed using a step size of 0.1. Sub-
sequent investigation of the effect of step size indicated that tabular
values of the functions f, r, and s are correct as presented in
table II, while the functions g, h, and H maybe in error by 1 in
the fotih place.

.
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SOLUTION OF FIRST ORDER-EQUATIONS FOR N = O

IN
co
m
(D

.

Physically, the solution of the first-order equations for I?= O
i: of little interest because the external flow representedby

‘e = 1 + & is simply the flow over a flat pktej the term & arises
because the reference velocity is taken slightly different from the
stream velocity. In practical applications, flat-plate flows would be
handledby the zero-order solutions. The case of N= O maybe of
academic interest, however, in addition to supplying limiting conditions
for cases of N~O.

The first-order momentum equation (eq. (38)) for N= O becomes

(cl)g;l + f g;l + f“gol= o

.

13&) = 1

The functions %2 ‘d %3
vanish identically. The general solution

of this equation is

r n

(C2}

The

From the

%=+”

coefficient of ~ in equation (C2) was given in reference 19.

boundary conditions it canbe found that Al= ~ = O =d

Therefore,

%1(7) = : (f + f’~)

The first-order energy equation for N= O and zero heat
reduces to

(u)

transfer

(C4)

—. —-..— ————. _.—
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Equation (C4) is a first-order linear equation in ~. The solution
satisfying the boundary conditions is

The function %2 is identically

arbitrary rates of heat transfer,
N=O:

~l+fifH~l=~

m
N

equal to zero. For flows with

the following equations arise for

2-
‘:4 ‘R fH64=sgos’ = G4(7)

qJo) = o

The solution of equation
ditions is

(C6)

(C7)

%+) = 1 %34(=) = o

%2=%3 =%5’0

(C6) satisfying the appropriate boundary con-

=

J’
E

[f’’(E)]R
J

[f’’(e)]-R Gl(e) de u -

n o

Similarly, the solution of equation (C7) is
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.
.

.

N

~
CD

.

m

J’
E

q34(9) = - [f”(mfi
J

[f’’(@)]-fi G4(e) de d~+

7 0

.-

The function ~(~) is again obtained by a linear combination of

~l(?)’~d ~4(TI) fithefo~o~u~er:

HO(TI)=

Values of %(O) and I%(O)

integration and are listed in

,

~J7) + : H()&l) (Clo)

for PC = 0..72 were obtained by numeri~l

table I.

—.- —. — . . . . .——— .—
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.
ATPENOIX D

SOLUTION FOR 1% = 1

In order to establish the effect of Prandtl number on skin friction

and to provide a basis for comparison with other solutions, some of the
ener~ equations were solved for the special case of Pr = 1. The
solution of the zero-order energ equation for l% = 1 is

r(q) = 1 - * (f’)2 (Dl)

cow
m
N

S(TJ

The solution of the first-order
is, for Pr= 1,

and

= 2- f’(v) (D2)

ener~ equations for zero heat tramsfer

=>fl
2

}

*

(m]

= ;f’~

The linear combination of equations (IX) yields

hN(~) =;f’
[gh + ~ @T2] . “

.

(D4)

The function ~ is independent of Randtl number, and hence the

values appearing in table III apply for aid.Randtl numbers. The
function g12 was calculated numerically for a Prandtl number of 1,

and results of this calculation appear in table VII.

The complete solution of the first-order energy equation for
Fr = 1 and flows with arbitrary rates of heat transfer was not found.
The following are the solutions of equations (4S) and (46) for R = 1
and

and

(D5)

(D6}
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N
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Il.
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‘IX8LEI. - mTIAL VALUES

Cfi, 0.72j y, 1.4

f“(o) = 1.3282 r(0) = 0.8477

s(o) = 2.0748 s’(O) = -1.2267

N=O Ii=l N=2 N=3

&J&(o) 0.9962 4.0821 6.3546 8.2879

E$Z(ol o .2807 .5847 .8717

~(o) o 5.0447 8.9738 12.4065

~(o) o.1523 0.1524 0.1526 0.1528

~#) o .0085 .0123 .0146

~ro) 0.0904 0.1479 0.1802 0.2042

~2(@ o .0082 .0145 .0195

~(o) o -.4201 -.2200 .0899

%4(O) 105326 5.5574 8.6985 ~.3879

~(o) o 5.3452 10.1820 14.5535

————— _—— .—— —-— —-—. ..——— .—



I

I

f

0,0000
.0066
,0’ 266
.0597
A061

J.656
33, {9
.5230
.42o3
.5295

.650(.)

.?tJiz
,Y223
pm:

1.3968
1.5691
1.’7469
1.9’?96
2L 160

.6596
:/875
9135

1,0339
la 495

1.8 n 9.3
l,S 626
1.4579
1.5449
1.6k S0

1.69al
175aa
18035
Le467
Leaaa

L9iio
1.935P
L.9517
1.V(?34
1.9’f5G

1,YU31
1.98 u 5
i.9 9 u J
IY 950
L!19G7

U’5YL,
l.~,i,,9
..0000
i.000o
dlooo

2.OGOO
.mroo
a.000o
2.0000
2.0000

&2920
246;,3
i.ajid
1,1060
1.I.317

1.0670
.99>4
.9124
.Ozb$
.,(3,$ i

.6455
s5ti0
.4715
.3 .9*4
.3205

.06>0
,0.154
.031’(
.0217
.0141>

.00:’6

.ou.~<

.0029

.00 :<,?,

.0013

,Coov
.000>
.000>
.0002
.0001

.Oooc

.0000

.0000

.0000

.oclo~

.0000

[w, 0.721

IF

0.0000
,oa47
.i6b7
2514
.3323

,410’(
.4060
.bb?o
.62s2
,60LIL

.960U

.s 090
1.012 (1
Lo3ab
1.0.$94

1.09b4
1.1014
L1G37
ls 054
1.1066

1.1G75
Lio61
l.l Gb5
I.. lo kc.
1.ia90

l..i .59.$

r

).B.i’/7
.8445
,. 9350
.81$6
.797L

.769;

.’/3bti

.6969

.6536

.o,GG’/

.59,/0
,5 Lla’/
!45Jb
,40ao
.32.19

.3c4a
,;+59b
.2161
.lUIY
.1.494

tall
,096!J
.0 ”/65
.0597
.04b5

.0349

.oa62

.03.9L

.0143
,0102

,00’{?
.0051
.0033
.002.,
.0010

.0011

.000’(

.0004

.000>

.OIJ(IC.

.0001

.0001

.0000

.0000

.0000

.0000

O.OIJOO
-.0656
-.la6u
-.1893
-.3503

-.3066
-.36kti
-.4110
-,4522
-.4046

-.5071
-,61U9
-,5198
-!5101
-04906

-.4627
-.48uti
-,>oe9
-,3470
-,304a

-,262d
-.aa2d
-.165’4
-.i5a3
-,i asi

-.u9bl
-.o’17u
-,0595
-.0464
-,03+1

-.0252
-.olb4
-.Ll15z
-.0094
-.0064

-,U 045
.,0031
-,00s0
-,4,013
-,000Y

-,0(.)0>

-.UO03
-.LICIOZ
-.0001
-.LIUO1

-. UOO1

IB

0.0000
.2013
.3904
,56’(a
.7319

,8843
l,oa46
lJ. 634
1,8704
1.3761

1.4709
1.65bti
1.6295
1.0945
1:/no B

1.7990
m::

19030
19266

19456
126u9
13730
iy8ti6
1989$

199S6
19990
a,oc130
2.0053
a.oo70

2m 08a
a.oo9i
a.uu97
2.OIUI
2.0104

C.oioo
L.oilJ7
2J)1OU
?.OIUU
3.010.9

i.olus
41109
A.01U9
LW1U9
AulfJ9

-1/lu?

B

8.074a
1,9521
l,8a95
1,7071
l,b 053

1.4644
L3460
1.22/ 6
1.11B9
1.0016

.a945

.7Yl+3

.695,(

.60s2

.b21kl

,4449
.375 ‘(
.3138
.a 592
.ai17

.1702

.1364

.107s

.085’/

.0644

.0489

.03.56

.oa7i

.0198

.0143

.oioa

.0072

.00s0

.0034

.0023

.001’6

.0010

.0006

.0004

.000s

.CO02

.0001

.0001

.300U
,Ooou

.C!ocu

-1.2020
-1 C1US3
-1,163.’(
-l’1 311
-13932

-1.04’/6
-~y~~

‘YJbi
CA’ (13
-.50au

-.7a96
-.6?)50
-J) E!2U
-2099
-.4406

-.3759
-.31 .sti
‘A6z3
‘d 146
-.l’/3o

-.13 ‘I6
-.IIJ78
‘-/3833
-.0633
-,0477

-.0333
-.0257
-,018$
-0131
-.oo9a

-.OUCIU

-J200LI
-.UO03
-Loos
-..3U01

-.. UU1



,

I

I
I

I

I

n

1
.1
.2
.3
.4

.5
-s
.7
.0
.9

LO
1.1
La
L3
L4

la
L.ls
L.?
1.0
1.9

a.o
a,i
a,a
a,3
a,4

a5
a.6
a.7
a.8
a.9

$.5
M
3.7
5.8
5.9

m

0.0000
.0197
.0763
.1657
3839

.4869

.6908

.7716
9665

1.1685

1,3773
1.5888
1.7984
‘a.ooso
8.20s7

a.s 9.39
8,5833
a.7580
a.9sa8
3.0779

3.aa37
3.3611
3.4910
3.6t43
3.73sa

3.s4s.7
39%56
4.0687
43677
427ia

4>736
4.4751
4.S768.
46760
4.777a

4/9775
49776
&0777
6d.770
3a77E

5>770
5.4770
5.s?70
65778
h7778

5.8?78

612

‘.0000
.0013
.0047
.0096
.0154

Llcl; :

.0384
;;; $:

.0413

.04i7

.0407

.03.96

.0356

.0s18

.0876

.oa3a

.0188

.0146

.0107

.0078

.0048

.0017

.0003

.0019

.oo3a

.0041
-0048
.0053

.0056

.0069

.0060

.0061

.oo6a

.0068
A063
.0063
.0063
.0063

-0063
-006S
.0063
.0063
.0063

.006S

- HI. - 801,UIIOU8 W F~T—XISR UWK!IKR4 EQUATION

m
0.0000
.0839
,090a
3913
380s

.4705

.6358

.8106
,9900

lJ.69S

13446
isias
L6703
L8159
1.947e

a,065i
a.1677
2.8566
a.3a97
2.3911

8.4408
8,4806
asii5
as 353
e5633

2.5666
a.376’a
a3830
a.5878
a.591i

as 933
85948
85968
89964
8s 968

8.9970
a.5971
a.597a
a.s 973
2.6973

8.6973
~6973
8.5973
a5973
-u 973

25973

[

m

0.0000
.3882
,7364

1,0446
i.3ia9

1.5413
1.7s00
1.6795
19907
a.064tl

aLo38
adlo4
8.0878
a.0403
L97a4

L8093
L7961
1.6978
1.6990
i.5036

L4147
1.3346
lS 643
12046
U.551

M153
Loa39
Lo69e
1.041E
1,0286

i.oi9a
1.0186
L.0081
1.00s1
1.00>2

1.0019
1.0011
lnoo?
LOO04
Loooa

Loool
1.0001
‘1.oOoo
.t.Oooo
LOOOO

.l.oOoo

0.721 Y. 1.401

Ei2

O::::;

.0487

.0s43

.0599

.0601

.0557

.0475

.0365

.0837

.0101
-.oo3a
-.0165
-.oa6i
-.0344

-.0403
-.0436
-.0446
-.0436
-.0408

-.0369
-.03a3
-.oa74
-.oa E6
-.oiea

-.oi4a
-.0108
-.0080
-.00S8
-.0041

-.0088
-.0019
-.0013
-.0008
-,0005

.,0003
-.000a
-,0001
-.0001
.0000

.0000

.0000

.0000

.0000

.0000

.0000

-
%’s

ROOOO
.4638
.8495

l.lsao
1.4063

L5872
L7098
i.7790
L8003
L7791

i.7ax3
L63a8
L5aoo
L3893
La470

L0993
.9516
.808.9
.67s1
.5631

.4448
3510
3719
s067
d54a

aia9
J3811
a57a
a397
0870

JJ180
.0118
.0076
.0048
.0030

.0018

.0011

.0007
,0004
oooa

J3001
.0001
.0000
.0000
.0000

.0000

4!3.
4,08ai
s.68al
3.a8 ai
a.28a3
a.4ea9

‘A0849
1.6903
L3018
.9a38
.S619

.aaae
-.0868
-.3577
-.5051
-.7635

-.8904
‘.9658
-.99a8
-.9770
-.9858

-.848a
-.7633
-.6497
-54s0
-.44s1

-.3543
-s 750
‘S083
-.1.541
-2113

-D 786
-.0648
-.0366
-.oa41
-.01s5

-.0098
-.0061
-.0037
-.oo aa
-J3013

-.0007
-.0004
-.0008
-.0001
-.0001

.0000

3.8807
.ei~a
.1474
.Oosi
.0879

-.oa25
-.0647
-.0977
-.iao7
-.1334

-.1360
-.1895
-.l isa
-.0951
-.07ia

-.0458
-:::::

.0198

.0338

.04s1

.0479

.048E

.0466

.04a4

.0368

.0308

.oa49

.0195

.0148

.0109

.0078

.0064

.0037

.ooa4

.0016

.0010

.0006

.0003

.000a

.0001

.0001

.0000

.0000

.0000

.0000

%0447
4.a394
3.4831
8.7758
a.1176

L5089
,9505
.443.9

-.0089
-.4058

-.74 aa
-L0171
-i.aaea
-L375a
-!-.4597

-i.4e56
-1.4591
-1.3084
-ia 83a
-1.1540

-Lollo
-.8637
-.7800
--9861
-.4661

‘3624
-a 755
-2050
-2493
‘.1064

‘A 744
-.0509
-.034a
-.0884
-.0144

-.oo9a
-.0057
-.00>5
-.0081
-.ooia

-.0007
-.0004
-.0008
-.0001
-.0001

Jlooo

ii

i
1
1
1
i

1
1
i
1
1

1
1
i
i
i

1
1
1
1
1

1
1
1
i
1

1

;
L
1

i

:
i
L

1
1
1
1
1

1
3.
1
1
1

1 w
co



,.

n

o
.1
s
.s
.4

,s
.6
.7
.0
.9

H

H
L4

Y-s
L6
L?
L8
L9

ao
ai
a2
as
2.4

‘2.s
2-6
%7
m
2!-9

3.0
3.1
3a
3.3
3.4

3.5
3.6
s.?
3.8
3.9

4.0
4.1
4a
4.3
4.4

*

.s2,

aoooo
.0304
.li6S
.2603
.4a48

.63ia

.864S
i.ii68
i.3e30
i.657a

1,9343
a,ao9e
a.4798
0.7409
a.9906

3.aa68
3,4484
;:.:;

40832

41667
4.5381
44780
&6i05
47347

53897

5A9i B
5.6931
56940
5.7945

8.8948
59950
6#9Si
6.i95a
6S902

63953
6.49.53
6.5953
6.6953
6.79S3

6.6983

622
1.0000
.ooa7
.0099
.oaos
.03a7

.0460

.059a

.0716

.0886

.0916

.098”6

.io3a

.1057

.io6a

.1050

.ioa5

.0999

.0947

.0908

.0857

.0814

.0779

.0741

.0711

.0607

.0668

.0693

.064a
,0633
.06a7

.06a3

.06130

.0618

.0617

.0616

.0616

.061S

.061S

.0615

.0615

.0615

.0616

.0615

.0615

.0615

.0615

K25

0.0000
.04al
$;:;

.s5s9

.6059
1.08io
L3685
y:;

a3a78
a.4930
a.7404
S9670
>.1711

3.ss18
3,s090
3.6434
3,7563
3.8494

L9a4a
3.9849
4.0317
4.0677
4.0947

4.1147
4.la9a
4.1395
4.1467
4.151?

4.1550
:.:::;

4:1596
4.i 60a

4.1605
4.1607
4.1609
4.1609
4.1610

4.i6i0
4.1610
4.1610
4i6i0
4-1610

4.i6i0

TA6tE HI. - Cmtim86 . sOLOTIO123 OF FDIST~ WXXMTCM EQUATI@l

“
%5

09738
7.3667
5,0766
4.3152
3,a 87a

adaioe
2.4386
2.6037
:;;:;

a.7703
a.7335
a.6604
a.5575
a43i9

aa 907
24406
Y..9887
1.640s
i.7ooa

i37ao
i.45ei
L3596
1.2767
1BOB6

i.oasa
i.0i65
1.0106
1.0066
1.0041

i.ooa6
1.0016
Z.000e
1.0005
1.0003

1.000i
1.0001
Loooo
1.0000
I.000o

Loooo

h., 0.72;

‘%
):::;;

.0901

.ii59

.1301

.1341

.ia93

.ii76

.1005
,0801

.0579

.0357

.0147
-.0039
-.0193

-,03ia
-.0393
-.0439
-.0454
-.044,3

-.0413
-.0369
-.0319
-.oa67
-.oa16

..017.1
-.01s1
-.0098
-.0071
-.0061

-.0035
-.ooa4
-.0016
-.0010
-.0006

-.0004
-.000a
-.0001
-.0001
.0000

.0000

.0000

.0000

.0000

.0000

.0000

1.401

Sk

a;;;;

z477a
1.9967
a.3848

a.6677
a.6a80
asoes
a9i09
!a.8477

a.7a99
a.5686
a.3738
a.i 560
i.9a47

;:.6::

ia 337
i.oa67
.a 39a

.6736
5307
Aio S
3117
s3a3

1700
.iaal
0861
.0s96
.0405

.oa70
a177
nii4
.oo7a
.0045

0027
0016
nolo
.0006
J3003

nooa
J3001
,0000
J3000
nooo

.aOoo

“

S21

63S46
5.6S7S
47743
40167
3.a9i7

‘2.6041
1.9573
1.3558
.7964
a886

-L664
-.5604
-.6914

-iA 54a
-13461

‘1.4670
-imaoo
-1.s113
-ZA 498
-13465

-1$136
-1.063a
-9o66
-.7509
-s097

-.4816
-s 713
+::;

-1478

-2039
-.0714
-.0481
-D 314
-oaoa

-.01’27
-.00?9
-Do47
-.oo aa
-0016

-.43009
-J5005
-.0003
-.0001
-Jlooi

Booo

“

%

0,5847
,4499
.3197
.1981
.0884

-.0069
-.0868
-.1471
-.1903
-.ai57

4;:;

-.1994
-.i7ia
-.1370

-.0999
-.0633
-.oa96
-.00 e

f.oa 0

.0379

.0477

.05ao

.0518

.0484

.0429

.036S

.0298

.oa3s

.0180

;:;;:

.0067

.0045

.0030

.0019
.oola
.0007
.0004
.000a

.0001

.0001

.0000

.0000
Dooo

JJOoo

a.194a
1.2316
3947

J.3ai9
-,9a33

-L4i40
-1.7979
-a.07e6
-aa 607
-a.3501

-a.3549
-aaa57
-a.i553
-19780
-i.769o

.1.5431
-13137
-lio9 aa
-.887a
-,7044

-.6468
-.4163
-3087
-aa46
-,i600

-alle
-.0764
-J3514
‘J3336
-.oai7

‘.0138
‘.0086
-aosa
-.oo3a
-0018

-J3011
‘.0006
-QO04
-oooa
-.0001

.0000

is
s

w
o
N
co

896Z



CR-6 2968

I

I

I

I

n

o
d
.8
.3
.4

.5

.6

.7

.8

.9

1.0
1.1
I-9
1.s
L.4

1.5
1.6
i.?
1.e
1..9

2-0
9.1
z-a
8.3
a.4

as
a.6
a.7
aa
a.9

5.0
3.i
33
3.3
3.4

%5

H
3.8
3.9

40
4i
4.8

E

4.5

S31

0.0000
.0394
4499
3197
A3381

.7948
1.0806
1.3869
1.7063
&osi9

a3677
a& ’186
a.990a
3.8890
9.87ai

3.a377
4.0847
4.3i86
4.5aao
4.7137

:.8::

b198i
h3354
.54638

6.5849
5.7004
58114
3-919a
6.0a4S

6.la81
6.2506
6c5sao
64330
65336

6J3340
6.7348
68S43
69>44
7.0346

TJ346
7a345
7.3345
74346
7.6346

7.6s45

m2

1.0000
0040
.0147
Also3
4488

.0687

.0887

.I 077

.1Q49

.1396

.15i6
J.607
.1669
.1704
.1717

.1711

.1690

.1659

.16al

.15ei

,154s
.i 504
.1471
.i 44a
.1418

.1398

.1363

.1s71

.1363

.1366

.135a

.1349

.1347

.1346

.1345

.1344

.1344

.1344

.i 344

.1344

,1344
,1344

:;:::
1344

1344

Og.o; g

S161
Ass+>
.7469

Lo8a3
1.4437
LBi8i
2.1947
25646

29a05
3.2567
55607

,3.8336
4.1093

4.3351
4.531a
4.6986
4.8390
4.9947

5.04E4
5iaa9
3A8i0
33056
S591

5.8.239
5.3019
5.3146
6.3a36
5.3a97

5.3338
6.3s66
5>S83
5.3395
5.340s

53406
63409
5.3410
63411
.5s4ia

[

231
0.0000
.7690

~4aoa
L9587
a.3916

a.7a7a
a.9739
34405
3.23s3
%0666

33418
X.693
30571
a.9i3a
S.7460

U~639
2,3747
a.iese
a.oo35
1.8330

i.678a
1s41s
L4a39
L3a53
1.2448

Lleos
14-305
lco9a5
1.064a
i.0437

i,oa9e
1,0 i 9 i
l.oisa
1,0076
1.0047

l.ooae
1.0017
1,0010
1,0005
1.0003

1,0001
i.000i
1.0000
1.0000
1.0000

Loooo

0.72, r, 1.431

%2

.0000

.0770
3343
.i7a9
J947

.2010
d.968
ae ai
J603
.1339

.1052

.0761

.04e5

.0’236
-ooa5

.0144

.0268

.0349
J339a
.040a

.0388

.0356

.0313

.oa66

.0818

.0173
a134
4100
.0073
.oona

.0036

.ooa4

.0016

.0010

.0006

.0004

.000a

.0001

.0001

.0000

.0000

.0000

.0000
aooo
.0000

.0000

%3

00000
ld. 189
00067
aA 850
3~77a

3.5073
3.69sa
3.7713
3.746o
3.6399

3.4689
33474
2.9807
s.705a
a.4083

a.io84
1.8149
1.5365
1S765
1042s

.8361
,6S8S
,5091
,3864
aa79

aio6
.isla
.I066
.0738
4s01

.0334
a219
.0141
A3089
.0066

.0034

.ooao

.oola

.0007
/3004

.000a

.0001

.0000
Booo
.0000

.0000

%
8ae79
7.0947
5938a
4a44a
3.ea8a

a8970
aosa7
ia933
.6163
.o19a

-.4988
-.9373

-~a 945
-L66B9
-L7600

-j..0696
-~90aa
-L8658
-i.77 ia
-1.6315

-L4606
-La7a8
-1.0798
-.8933
-.7a08

-.6676
-.4364
-.3a77
-.84o6
-A7as

-.iail
-.0830
-.0s60
-.0363
-.oa33

-.0147
-.0091
-.0055
-.0033
-.0019

-.0011
-.0006
-.0003
-.0001
-.0001

.0000

%2
0.8717
.6698
.4766
.a 986
.1409

.0064
-.ioa9
-.i E66
-,a 449
-.a 794

-.a9aa
-.a86i
-.a 648
-.a3i 3
-.1906

-.1463
-.ioai
-.0610
-.oas4
.0033

.oa45

.0385

.0460

.0483

.0466

.04aa

.0365

.0301

.oa4i

.0184

.0139

.0098

.0073

.0043

.ooa9

.ooao

.ooia

.0007

.0004

.0003

.00QI

.0001

.0001

.0000

.0000

.0000

$3

la.4065
Lo.000a
7.7984
sala9
4.J37a6

a.5677
1.8856
.2079

-.6847
-1.4106

-L.9855
-a.4a a o
.a.73 06
.a.9aoa
-3.0003

-a9815
-a.8767
-a.7 009
-2.47 i 1
.a.aosl

-i.9a04
-1”5331
-1.3566
-I.1OI3
-.8739

-.-57aa
-.s149
-.38a5
-.a783
-.t98a

-.1306
-.0946
-.0636
-.041s
-.oa6e

-.0170
-.0106
-.0064
-.0040
-.ooas

-.0014
-.0007
-.0009
-.000a
-.000a

J)ooo

—
H

T
3
3
3
3

3
3

:
3

3
3
3
s
3

3

;
3
3

3
3
3
3
3

3
3
3
3
3

3

;
3
3

3
3
3
3
3

3
3
3
3
3

3
—



42

o

2
.3
-1

.5
-6
.7
.8
.9

Lo
Is

?:
1.4

L5
1.6
1.7
L8
1.9

io
21
22
23
24

25

“?$
2.8
2.9

3.0
3.1
3.2
3.3
3.4

?2

H
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

%1
0.0000
.0159
.0353
.0614
.0968

3432
-2021
.274a
3598
.4583

.5690

.6904

.8208

.9504
1.1o12

la470
1.3940
1.5406
1.6854
1-8273

I-9655
2~996
22295
23551
24767

2-5946
27091
20208
2.9299
3.0371

3A425
3.2466
3.3496
3.4519
3.5534

3.6546
3.7554
3.8559
3.9563
4.0565

4.1.567
4.2568
4.3568
4.4569
4.5569

4.6569
4.7569
4.8570
4.9570
5.0570

J%2

0.0000
.0009
.0020
.0034
.0053

.0074

.0098

.0123

.0146

.0167

.0102

.0191 ~

.0193

.0187

.0172

.0151

.0123

.0090

.0054

.0016

-.0022
-.0059
-.0094
-.0126
-.0155

-.0180
-.0201
-.0219
-.0234
-.0246

-.0255
-.0263
-.0268
-.0272
-.0276

-.0278
-.0279
-.0281
-.0281
-.0282

-.0282
-.0282
-.0283
-.0283
-.0283

-.0283
-.0283
-.0203
-.0283
-.0283

[W, 0.72;y, 1.40]

%1
0.1524
.1710
.2232
.3034
.4059

.5249

.6544

.7886

.9215
S.0479

1.1628
1.2624
1.3437
L4051
1.4460

1.4673
1.4708
1.4589
1.4347
1.4015

1.3623
1.3201
1.2772
1.2356
L.1967

1.1614
1.1303
1.1035
1.0809
1.0622

1.0472
1.0352
1.0259
1.0187
L.0134

LO094
1.0065
L.0044
L.0030
1.0020

1.0013
1.0008
L.0005
1.0003
L.0002

1.0001
1.0001
1.0001
1.0000
LOOOO

%2

0.0085
.0097
.0126
.0163
.0200

.0230

.0246

.0244

.0223

.0183

.0126

.0055
-.0024
-.0104
-.0182

-.0250
-.0306
-.0347
-.0372
-.0382

-.0377
-.0361
-.0335
-.0304
-.0269

-.0232
-.0197
-.0163
-.0133
-.0106

-.0083
-.0064
-.0049
-.0036
-.0026

-.0019
-.0013
-.0009
-.0006
-.0004

-.0003
-.0002
-.0001
-.0001
.0000

.0000

.0000

.0000

.0000

.0000

‘il

aoooo
.33; :

.9231
1.1174

G3526
L3282
1.3448
1.3051
&2139

Z0784
.9083
.7151
.5112
.3091

.1200
-.0470
‘2856
‘.2925
‘.3671

-.4114
-.4291
-.4251
-:4044
-.3720

-.3326
-.2898
-.2467
-.2056
-.1679

-.1345
-.I057
-.0816
-.0619
-.0464

-.0338
-.0244
-.0173
-.0120
-.0082

-.0056
-.0037
-.0024
-.0016
-.0010

-.0006
-.0004
-.0002
-.0001
.0000

1.0000
.0221
.0348
.0386
.0344

.0236

.0078
.0111
.0309
.0494

.0648

.0755

.0806

.0799

.0737

.0629

.0489

.0331

.0171

.Ooal

.0109

.0214

.0290

.0338

.0361

.0363

.0348

.0321

.0286

.0248

.0210

.0173

.0139

.0110

.0005

.0064

.0048

.0035

.0085

.0018

.0012

.0008

.0006

.0004

.0002

.0002

.0001

.0001

.0000

.0000

m

i
:
1
1

1

:

:

1
1
1
1
1

1
1

;
1

i
1
1
1

1
1
1
1
1

;
1
1
1

1
1
1

:

;
1
1
1

1
1
1
1
1—

_-—
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TPBL2 IV. - Continued. SOLUTIONS OF F~T-ORD~ ENEROY EWAITON FCR ZENO NEAT TRANSFSN

[1+,0.72;y, 1.40]

o 0.0000 0.0000 0.1526
.3. .0162

0.0123 (L:~;g
.00; ;

.2 ::;:
.3.812 .0148
2597 .0210

.3 .0056 .3774
.9986

.0291
.4 2143 .0089

pm:
.5239 .0375

,5 2749 .0130
.6

.6892 .0449
3525 .0178

1..7149
.8638 .0500

.7 3477
3-7628

.0230
.460 O

1.0390 .0522
.0282 1.2067

1.7267
.0512

:: .5885 .0331
1.6159

13600 .0460 L4419

1.0 .7314
1.1

.0374 1.4934 .0394 l.:.;:
.8864 .0409 1.6025 .0297

la 1D51O .0433 1.6847 .0183 .6830
1.3 la2a4 .0445 1.7390 .0063
1.4 1.3979

.4044
.0446 1.7660 -.0056 .1392

1.5747 .0434
::

L7677 -.0165
3,.’?507 .0413

1.7
3..7474

-.0993

l_.9236
7.0259 -3013

.0383
1.8 2.0920

L7089
.0347

-.0332
1.6568

-.4607
-.0384

1.9 2a 547
-s’?53

.0307 1.5953 -.0414 ‘.6464

2.0 24109 .0265
2.1 256o4

1.5288 -.0423 ‘.6782
.0223 1..46O8 -.0415

27031
-.6767

.0183
E

3..3943 -.0393
28394

-.6490
.0145

24
1.3317 -.0362

29696
-.6o22

.0111 1.2743 -.0324 -.5432

2.5 3.0944 .0080 3-2232 -.0283
33145 .0054

-.4778

%
1.1788 -.0241

33304 .0032 1.1410 -.0202
-.4107
-.3456

3.4429 .0014
::: 3.5525

L1095 -.0165 -3851
-.0001 1.0838 -.0133 -2307

3.0 3.6598 -.0013
3*I

&0631 -.0104
3.7653 -.0022 3..0469

‘.1833
-.0081

33 3.8693
-.1431

-.0029 1..O343 -.0061
::.9:; -.0035

-1097

R
p::~ -.0046

-.0039
.-.0828

-.0034 i -.0614
1

3.5 4.3.758 ‘.0042
4.8768

LOZ23 -.0024
-.0044

-J1448

:5
1.0085 -.0017

4.3776 -.0045
3.8

1.0058
-.0321

4.4780
-.0012

‘.0046
39

.1.0039 -.0008
-A1227

4.5783 -.0047 1.0026
-.0157

-.0005 -9107

4.6786 -.0047 t -.0072
:;

1.0017 -.0004
4.7787 -.0048 1.0011 -.0002 -.0048

42 4.8788 -.0040 1.0007 -.0001
4.9788

-.0031
-.0048

H
1.0004 -.0001 -.0020

5.0789 -.0048 1.0003 .0000 -.0014

4.5 5.17139 -.0048 1.0002 .0000
52789

-.0008

::$
-.0048 1.0001 .0000

5.3789 -.0040 1.0001
-.0005

.0000
4.e 5.4789 -.0048 1.0001

-JJO03
.0000

4.9 5.5789 -.0048 1.0000
-.000a

.0000 -.0001

0.0000 a
.0465 2
.0744
.0852 :
.0808 2

.0639

.0379

.0061
-.0275
-.0595

-.0867
-d.069
-.1185
-J.212
-a153

:
2
2
2

-.1023 2
-.0840 2
-.0627 2
-.0405 2
-.0191 2

-::::$ 2

.0273 :

I
.0354 2
.0400 2

.0416

.0.+08

.0383

.0347

.0304

2
2
a
a
2

.oa59 a

.oa15 a

.0174 a

.0138 a

.0107 2

.0081

.0061 :

.0044

.0032 :

.0022 a

.0016

.0011

.000’7

.0005

.0003

.000a

.:0:;

J3001
.0000

a
2
2
a
a

‘.

.—— — —- .— ——
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n

o
d
2
.3
.4

.5

.6

::
.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0

H
2.3
2.4

2s
2.6
2.7
2.0
2.9

3.0

R
3.3
3-4

H
3.7

;2

4.0

:$

H

4s
4.6
4.’7
4a
4.9

TA8LJIIV. - Conoluded.SOIJ7TION2@ F122T-CRDER EWR(li’ 8QUATION FOR Z8R0 82AT NS=R

11-kJ

O::SJ::

.0400

.0761

.1286

.2001

.2921

.4046

.5368

.6870

.8528
1.0315
1..2199
I.-4146
1.6125

1.8105
2J)059
2.1966
23809
2.5574

2.7257
2.8855
3.0368
3.1,801
3.3162

3.4456
3.5693
3.6881
3.8028
3.9L41

4.0227
43.290
4.2337
4.337’1
44396

4.:4;;

4.7433
4.8438
4.9442

5.0444
53,446
52447
53448
5.4448

5.5448
5.6448
5.7448
5.8449
5.9449

1152

0.0000
Jlmg

.0072

.0118

.0176

.0244

.0319

.0396

.04’71

.0540

.0599

.0646

.0678

.0697

.0700

.0691

.0670

.0641

.0606

.056’7

.0526

.0487

.0449

.0414

.0383

.0356
;;;::

.0298

.0286

.0276

.0268

.0263

.0259

.0255

.0253

.0252

.0251

.0250

.0249

.0249

.0249

.0249

.0249

.0249

.0249

.0249

.0249

.0249

[1+,o.’

%

0.3.528
.1897
.2897
.4371
.6172

.8165
1.0229
C2255
L4154
L5848

1..7279
1..84O7
L9209
L9683
L9841

1.9713
L9339
1.8770
L8056
1.7251

l.:.:;

2..4725
1.3958
1.3261

1.2645
1-2112
1.1661
1.1286
k0982

1.0738
L0547
1.0399
L0287
L0204

L0142
1.0098
1.oo66
1.0044
LO029

.1.oo19
1.0012
1.0008
LOO05
LOO03

LOO02
3..0001
1.00Q1
1.0001
Loooo

y, 1.401

h32

0.0146
.0183
.0275
.0396
.0524

.0637

.0721

.0767

.0769

.0727

.0646

.0534

.0398

.0251

.0104

-.0034
-.0154
-.0253
-.0327
-.0375

-.0399
-.0403
-.0390
-.0364
--0330

-.0291
-.0250
-.0210
-.0173
-.0140

-.0111
-.0086
-.0065
-.0049
-.0036

-.0026
-.0018
-.0013
-.0009
-.0006

-.0004
-.0002
-.0001
-.0001
.0000

.0000

.0000

.0000

.0000

.0000

h$~

0.0000
.711a
1.2623
l-661a
L9186

2.0473
2.0616
1.9764
Leo73
L571O

1-2849
0.9674
0.6371
0.3121
0.0090

-.2584
-.4801
-.6505
-.7680
-.8352

-.8575
-.8425
-.7986
-.7343
-.6575

-.5747
-.4914
-.4116
-.3381
-.27a6

-.2159
-.1680
::;:;

-.0715

-.0520
;;.:;

‘.0181
-.0124

‘.0083
-.0055
‘.0036
-.ooa3
-.0014

-.0009
-.0005
-.0003
-.000a
-.0001

0.0000
.0693
.1111
.la79
.la31

.1009

.0663

.oa4a
-..oaoa
-.0624

-.0987
-.1261
-.1429
-.1486
-.1440

-.1304
-.1104
-.0863
-.0608
-.0359

-:::::

.0202

.0307

.0372

.0403

.0405

.0387

.0355

.0314

.0369

.02a5

.0183

.0146

.0114

.0087

.0065
m;:

.ooa4

.0017

.0012

.0000

.0005

.0004

.0003
:::::

.0000

.0000
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TABLEv. - EoLwrIom OF FImr-omER ENERGYEQWTIOH FoR

Y-

0
.1
:;

.4

.5

.6

.7

.8
9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1,
22
2.3
2.4

2.5

%
2.8
2“9

3.0
33,
32
33
304

3.5

H
3.8
39

4.0
4.1
42
4.3
4.4

4.5
4.6
4.7

:::

0.0000
.0014
.0078
.0S23
.0473

.0848

.1359
2014
3813
.3751

.4818

.5999

.7277

.8631
1.oo41

L1486
I-.2946
3..4167
L5845
1.7258

1.8637
L9976
2.1272
2.2527
2.3742

2.4920
2.6o65
2.7181
2.8273
2.9344

3.0398
3.1439
3.2469
3.3492
3.4508

3.5519
3.6527
3.7532
3.8536
3.9538

4.0540
4.1541
4.2542
4.3542
4.4542

4.5543
4.6543
4.7543
4.8543
4.9543

. 543

ARBmmRY M!cEsoF2EATTRamFER

[ET, 0.72;r, 1.40]

(a) The functionIH(n). .?E d~

).0000
S)::;

.0013

.0025

.0042

.0061

.0082

.0103

.0120

.0134

.0141

.0141

.0134

.0118

.0096

.0067

.0034
-.0002
-.0041

-.0079
-.0116
-.0151
-.0183
-.0212

-.0237
-.0258
-.0276
-.0291
-.0303

-.0313
-.0320
-.0325
-.0330
-.0333

-.0335
-.0337
-.0338
-.0339
-.0339

-.0339
-.0340
-.0340
-.0340
-.0340

-.0340
-.0340
-.0340
-.0340
-.0340

-.0340

q-j

0.0.000
-.0.013
-.0027
-:::;:

.0192

.0394

.0660

.0982

.1347

.1739

.2141

.2535

.2907

.3244

.3537

.378o

.3970

.4111

.4206

.426o

.4281

.4277

.4255

.4221

.4181

.4138

.4097

.4059

.4025

3996
3972
3953
3938
.3926

.3917

.3911

.3906

.3903

.3901

.3899

.3898

.3898

.3897

.3897

.3897

.3897

.3897

.3897

.3897

.3897

“o

%4

0.0000
m;:

.2494

.4416

.6859
9792

1.3173
1.6949
2~057

2.5422
29965
3.4601
39245
43816

4J3235
52437
5.6366
59980
63250

6.6161
6.8712
70912
7.2780
7.4341

7.5625
7.6666
7.7497
7.8149
7.8654

7.9040
7s 329
7.9543
7.9699
7.9811

7.9890
7.9946
7.9984
8-0009
8.0026

8.0038
8.0045
8.0050
8.0053
8.0054

8.0056
8.0056
8.0057
8.0057
8.0057

8.0057

Or)ooo
.0267

w:
.4238

6571
.9357

1.2549
1.6087
19901

2.3914
2.8043
3.2205
3.6320
4.0312

4.4117
4.7679
5.0958
5.3924
5.6563

5.8874
6.0863
6.2550
63956
6.5111

6.6044
6.6787
6.7370
6.7820
6.8162

6.8418
6.8607
6.8745
6.8844
6B 913

6.8962
6.8995
69017
6S 032
69042

69049
69o53
69055
69057
6.9058

6.9058
69059
6.9o59
6.9059
6.9059

69059

s=’

.-. ——. —— .—— ._. .—-. — .—. ——— —



TAHLEV. - Continued. 2JXZ?ITOHHOF FIRSI!-ORUKRHRHRGYEQUATIONFOR

o
.l
.2
.3
.4

5
.6

:;
.9

1.0
13

k;
1.4

3-.5
L6
1.7

::

20
21
22
23
24

25
26
27
28
29

3.0
3.1
3.2
3.3
3.4

3.5
3.6
5.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4

4.5
LI.6
4.7
4.8
4.9

so
ELl
5.2

AmmRARY RmEsoFBEATTRARamR

[R, 0.72jT, 1.w]
~

(a) Continued. The function IH(rI).
J

H dq
F

0.0000
.0019
.0109

..0316
.0672

J199
J.91O
.28o8
3888
.5137

.6538

.8067

.9696
1.1397
1.3142

1.4903
1.6657
1.8383
2.0063
2.1688

2.3249
2.4743
2.6169
2.7531
2.8833

3.0081
3.1282
3.2441
3.3566
3.4662

3.5735
3.6790
3.7830
3.8859
3.9880

40895
4.1905
4.2912
4.3917
4.4920

4.5922
4.6924
4.7924
4.8925
4.9925

5.0926
5.1926
5.2926
5.3926
5.4926

5.5926
5.6926
5.7926

0.0000
.0002
.0009
.0025
.0051

.0086

.0128

.0176

.0224

.0270

.0312

.0345

.0367

.0379

.0378

.0366

.0344

.0314

.0278

.0238

.0196

.0154

.0113

.0075

.0041

.0010
-.0016
-.0038
-.0056
-.0071

-.0083
-.0092
-.0099
-.0105
-.0109

-.0111
-.0114
-.0115
-.0116
-.0117

--0117
-.0118
-.0118
-.0118
-.0118

-.0118
-.0118
-.0118
-.0118
-.0118

-.0118
-.0118
-.0118

%3
0.0000
.0002
.0055
.0210
.0499

.0936
i520
.2237
.3063
.3969

.4922

.5887

.6832

.7729

.8554

.9290

.9927
L0460
1.0892
1.1229

L1481
3..1661
1.1780
L1852
L1889

l.S900
I.-1894
I-1878
1.1857
1.1834

1.1812
L1792
L1775
1-1761
Y#1750

L1741
L1734
L1729
I-1726
I-1723

1.1722
1.1720
1.1720
1.1719
1..1719

LL 719
11719
1.1719
I-.1719
1.1719

1.1719
lJ 719
3..1719

0.0000
.0435
.1738
.3899
.6899

1.0698
1.5239
2.0449
2.6232
3.2481

39073
4.5881
5.2774
5.9623
6.6308

7.2721
7.8771
8.4384
8.9508
9.4112

9.8183
102727
10.4764
10.7328
10S 458

11.1202
11.2607
11.3724
11.4597
11.5270

11.5781
11.6164
11.6446
11.6650
11.6797

11.6900
11.6972
11.7021
11.7054
11.7076

11.7091
11.7100
11.7106
11.7110
11.7112

11.7114
11.7115
11.7115
11.7115
11.7116

11.7116
11.7116
11.7116

%5-
0.0000
.0509
.2033
.4559
0055

1.2465
1.7710
2.3685
3.0266
3.7311

4.4668
5S180
5S 694
6.7064
7.4161

8.0874
8.7115
9.2819
9.7947

10.2484

10..6433
109816
11.2669
11.5039
IL6977

1L8538
119776
12.0744
12.1489
12.2054

12.2477
12.2788
123014
123176
12.3290

12.3369
123423
123460
12.3484
123500

12.3510
12.3517
12.3521
123523
123525

123526
12.3526
123527
123527
123527

12.3527
12.3527
123527

.- -. ——.—— .- .._ .—
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TABLE V. - (%ntinued. SOLLEP10N8 OFFIRST-ORDERENERGYEQJP.!ITOlfFOR

co

~
N n

o
d
.2
.3
.4

.5

:;
-8
.9

1.0
1.1

E
1.4

1.5
1.6
1.7

:;

2.(J

%.
2.3
2.4

2.5
2.6

;::
2.9

3.0

;:
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4

:2

H
4.9

H
5.2
53

%51

MBITRAM RATES OF BE4TTMNSFER

[Pr,o.7zjy, 1.40] ~

(a) Concluded. The function IE(q) .

F“ =E=

%35

0.$::;

.0135

.0391

.0830

.1475

.2338

.3417

.4703

.6178

.7815

.9586
l..I458
U3397
L5369

1.7345
1.9296
2-1201
2.3041
2.4866

2.6488
2.8005
2.9598
3.1032
3.2392

3.3686
3.4923
3.6111
3.7258
3.8371

3.9456
4.0520
4.1.567
4.2601
4.3626

$.4643
$.5655
$.6663
$.7668
$.8672

$.9674
50676
51677
52677
53678

54678
55678
5.6678
5.7678
.5.8678

5.9678
6.0678
6.1678
62678

3:s)::;

.0013

.0037

.0074

.0126

.0189

.0259

.0333

.0406

.0473

.0530

.0576

.0607

.0625

.0628

.0618

.0597

.0568

.0532

.0493

.0453

.0413

.0375

.0341

.0310

.0282

.0259

.0240

.0225

.0212

.0202

.0195

.0189

.0185

.0182

.0180

.0178

.0177

.0176

.0175

.0175

.0175

.0175

.0174

.01’?4

.0174

.0174

.0174

.0174

.0174

.0174

.0174

.0174

=33

0.0000
.0023
.0153
.0458
.0977

.1720

.2680

.383o

.5132

.6541

.8010

.9490
1.0936
1..23o9
3-.3577

1..4719
L5720
3..6575
2-.7285
1.7860

1.8311
L8655
1.8907
3..9086
1.9207

1.9284
L.9329
L9352
L.9360
L9559

L.9353
L.9344
L-9336
L9328
L..9321

L.9315
L.9311
L.9308
L9305
L.9304

L9303
L9302
L.9301
L9301
L9,30 1

L9301
1.9301
1.9301
L9301
L9301

1.9301
L.9301
1.9301
L9301

0.0000
,0569
2274
.5101
.9015

1.3958
1.9848
2.6573
3.4002
4.1984

5.0358
5.8954
6.7605
7.6150
8.4443

9.2354
9.9778

10.6630
11.2857
11.8426

12.3330
12.7582
13.123-4
13.4268
13.6798

13.8863
14.0523
14.1837
14.2863
14.3652

14.4250
14.4697
14.5025
14.5263
14.5433

14.5553
14.5636
14.5693
14.5731
14.5756

14.5773
14.5784
14.5790
14.5795
14.5797

14.5799
14.5800
14.5801
14.5801
14.5801

14.5801
14.5801
14.5801
14.5801

0.0000
.0727
.2905
.6510

1.1488

1.7749
2.5165
33574
4.2786
5.2591

63769
7.3100
83370
9.3387

10.2979

11.2006
120357
12.7956
13.4761
14.0758

14S 961
15.0405
15.4144
15.7242
159770

I,6S803
163412
16.4669
16.5635
16.6367

L6.6914
L6.7316
L6.7608
L6.7816
L6.7963

L6.8066
L6.8135
L6.8182
L6.8214
1.6.8234

L6.8247
L6.8256
!6.8261
L6.8264
!6.8266

.6.8268
6:8268

i6.8269
16.8269
16.8269

16.8269
L6.8269
1.6.8269
16.8269

.—. — -—.
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TAHLEv. - Cmtlmed. SXU’JT.ONSOF FIFW-OXDER EEEEZYEQJATIORFOR

o
3.
2
.3
.4

.5

.6

.’7

.8

.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1

z
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1

::;
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

5.0

0.0000
.0333
.1000
.1942
.3100

.4414

.5825

.7272

.8696
1.0044

1.1268
1.2328
1.3197
1.3857
3-.4306

1.4552
3..4613
L4516
L4291
L3973

L3592
&3178
1.2755
1.2344
L1958

L1608
34299
L1032
1.0807
3..0621

L0471
1.0352
L0259
l.o188
l.o134

LO 094
LO066
2..0045
1..0030
LO 020

LO 013
LOO08
1,ooo5
LOO03
1,ooo2

l“oool
1.0001
10001
1..000o
LO CJOO

1.000o

AmmRARY RATE20FHEAT!CRmHFm

[F&, 0.72;y, 1.40]

(b) The function E(q)

).0000
.0020
.0057
.0102
.0147

.0183

.0206

.0210

.0194

.0159

.0106

.0039
-.0037
“.0115
-.0190

-.025’7
-.0312
-.0351
-.0376
-.0384

-.0379
..0362
-.0336
-.0305
-.0269

-.0233
-.0197
..0163
-.0133
-.0106

‘.0083
‘.0064
-.0049
‘.0036
-.0026

..0019

..0013

..0009
-.0006
..0004

..0003

..0002

..0001

..0001
.0000

.0000

.0000

.0000

.0000

.0000

.0000

3.0000
-.0198
-.0028
.0404
.1000

.1674

.2350

.2962

.3462

.3813

.3997

.4008

.3856

.3563

.3160

.2682

.2168

.1653

.1167

.0733

.0367

.0075
-.0142
-.0291
-.0380

-.0420
-.0423
-.0401
-.0362
-.0314

-.0264
-.0216
-.0172
-.0134
-.0101

-.0075
-.0055
-.0039
-.0027
-.0018

-.0012
-.0007
-.0004
-.0002
-.0001

.0000

.0000

.0000

.0000

.0000

.0000

H14

0.0000
.5556

L1091
L6554
2.1869

2.6938
y;:

3:9534
4.2493

4.4679
4.6038
4.6543
4.6205
4.5o68

4.3211
4.0738
3.7773
3.4454
3.0920

2.7305
2.3731
2.0301
1.7096
1.4174

13570
9301
.7363
.5740
.4408

3335
2485
A824
.1320
.0940

.0660

.0457

.0311

.0209

.0138

.0090

.0058

.0037

.0023

.0014

.0009

.0005

.0003

.0002

.0001

.0000

EM

aoooo.
.5343
1.0659
L5884
20923

2.5664
2.9983
3.3760
3.6884
3.9267

4.0846
4.1593
4.1516
4.0655
3.9088

3.6916
3.4262
3.1259
2.8043
2.4743

23.478
1.8344
1.5419
12756
1.0390

.8332

.6580

.5117
3920
2958

.2199

.1611

.1163

.0827

.0579

.0400

.0272

.0183

.0121

.0079

.0051

.0032

.0020

.0012

.0007

.0004

.0003

.0001

.0001

.0000

.0000

iJ7 N
to
m
m
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W V. - Continued. SQIDIZORSOF KUWl!-OHDHR~ EQUA!DOI?FOR

,
a
CD
0’)
N

n

o
.1
.2
.3
.4

.5

.6

.7

.8

.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

:.:
.

K

%1
0.0000
.0465
.1424
.2766
.4384

.6176

.8046

.9905
1..1676
1.3288

1.4688
1.5833
1.6699
3..7278
1.7575

1.7614
1.7427
1.7055
1.6543
1.5936

;:.5; ;

13937
1.3312
12740

12230
1A 787
11409
lao95
1.0838

1.0631
L0469
1.0343
3..0247
1.0176

1.0123
%0085
1.0058
1.0039
1.0026

3..0017
10011
LOO07
::( ):;

LOO02
1.0001
1.0001
1.0001
1.0000

-1.0000
I.000o
1.0000

ARRMMRY RATE20FREATTRMEFER

[Pr, 0.72;l-,1.40]

(b) Continued. The function H(q)

%2

O:sl::g

.0115

.0210

.0306

.0391

.0452

.0483

.0480

.0443

.0375

.0281

.0171

.0054
-.0063

-.0170
-.0263
-.0335
-.0386
-.0415

-.0424
-.0416
-.0394
-.0362
-.0324

-.0283
-.0242
-.0202
‘.0165
-.0133

-.0105
-.0081
-.0062
-.0046
-.0034

-.0025
-.0017
-.0012
-.0009
-.0006

-.0004
-.0003
-.0002
-.0001
-.0001

-.0001
-:gmg;

mlg:

.0000

.0000

.0000

%3
0.0000
ml:;

.2183

.3622

.5118

.6534

.7760

.8716

.9352

.9646

.9605

.9255

.8642

.7827

.6874

.5851

.4819

.3831

.2928

.2137

.1472

.0937

.0524

.0222

.0014
-.0118
-.0192
-.0224
-.0226

-.0211
-.0185
-.0156
-.0127
-.0100

-.0076
-.0057
-.0042
-.0030
-.0021

-.0014
-.0010
-.0006
-.0004
-.0003

-.0002
4#lcl;

-.0001
-.0001

.0000

.0000

.0000

. 00

%’4

O::s)::

1.7347
25854
3.4069

4.1813
4.8898
5.5134
6.0353
6.4415

6.7222
6.8722
6.8917
6.7862
6.5658

6.2451
5.8418
5.3758
4.8677
4.3379

3.8052
3.2861
27941
23394
1.9290

1.5665
1.2531
.9874
.7664
.5861

.4416

.3278

.2398

.1729

.1228

.0859

.0592

.0402

.0269

.0178

.0116

.0074

.0047

.0029

.0018

.0011

.0007

.0004

.0002

.0003.

.0001

.0001

.0001

.0000

’25

0.0000
1..O177
2.0287
3.0179
3.9641

4.8429
y;i

6:8378
7.2269

7.4606
7.5379
7.4650
7.2538
6.9215

6.4894
5.9810
5.4210
4.8333
4.2402

3.6610
3.1114
2.6033
2.1448
1.7402

1.3907
1.0947
.8489
.6486
.4882

.3621

.2647

.1907

.1354

.0947

.0653

.0444

.0297

.0196

.0128

.0082
s);;;

.0020

.0012

.0007

.0004

.0002

.0001

.0001

.0001

.0001

.0001
0000

2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

2
2
2
2

2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

2
2
2

E

2
2
2
2
2

2
2

L

. — —.
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o
.1
.2
.3
.4

.5

:5
.8
.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

i%
2.7
2.8
2.9

3.5

H
3.8
3.9

4.0

%;
4.3
4.4

4.5
4.6
4.7
4.8
4.9

5.0

%?
5-3

TABLEV. - Ccmtimwd. ROLUI’IOE2 OF ~-ORllER KttERUY EC$IATIOH FCIR

MBITF@X RA!lZ2SOF RFATTRAN2FER

[Fr, 0.72JT, 1.40]

(b)Concluded.The function H(rI) =xzz=’

%51

0.0000
.0473
.1767
.3423
.5390

.’7529
:9719

11853
1.3840
1.5607

L7097
L8271
L9109
3..9609
L9788

1.9675
1.9313
1.8751
L8043
1..7242

L6395
1.5544
4..4723
2..3956
1.3260

1.2644
12111
1.1660
~1286
1.0982

3..0738
L0547
1.03.99
3-0287
L0204

L0142
LO 098
10066
10044
1.0029

10019
LO 012
1.0008
3..0005
3..0003

3-.0002
1.0001
1.0001
Loool
1.0000

I.000o
Loooo
Zoooo
1.0000

%2

0.0000
.0056
.0167
.0306
.0449

.0576

.0673

.0729

.0739

.0705

.0629

.0520

.0388

.0244

.0099

-.0037
-.0157
-.0255
-.0328
-.0376

-.0400
-.0403
-.0390
-.0364
-.0330

-.0291
-.0250
-.0211
-.0173
-.0140

:::;;:

-.0066
-.0049
-.0036

-.0026
-.0019
-.0013
-.0009
-.0006

-.0005
-.0003
-.0002
-.0002
-.0002

-- 0001
.0000
.0000
.0000
.0000

.0000

.0000

.0000

.0000

%3

0.0000
.0624
.2090
.4079
.6310

.8547
1.0601
1.2330
13638
1.4473

1.4819
1.4697
1.4153
1.3255
1.2084

L0730
.9280
.7816
.6406
.5104

.3947

.2954

.2132

.1475

.0968

.0591

.0323

.0141

.0026
-.0041

-.0075
-.0086
-.0084
-.0075
-.0062

y3::

-.0028
-.0020
-.0014

-.0009
-.0006
-.0004
-.0002
-.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

%4
0.0000
1.1383
2.2695
33778
4.4407

5.4327
63275
7.1008
7.7320
82059

8.5131
8.6511
8.6240
8.4422
8.1217

7.6829
7.1496
6.5470
5.9009
5.2359

4.5744
3.9355
3.3344
27827
2.2874

i8523
~4776
lA614
.8994
.6862

.5160

.3823

.2791

.2008

.1424

.0994

.0684

.0464

.0310

.0204

.0133

.0085

.0054

.0033

.0021

.0012

.0007

.0004

.0003

.0002

.0001

.0001

.0001

.0000

T
%5 :N

0.0000 3
1.4545
%8973 :
4.3033 3
5.6378 3

6.8629 3
7.9423 3
8.8443 3
9.5447 3

10.0285 3

102903
103346 :
10.1744 3
9.8307 3
9.3302 3

8.7040 3
79850
7.2067 :
6.4007 3
5-5957 3

4.8162 3
4.0818
3.4068 :
2.8007 3
22679 3

1.8092
1.4220
1.1012
.8403
.6319

.4683

.3420

.2462

.1747

.1221

3
3
3
3
3

3
3
3
3
3

.0841 3

.0571

.0382 :

.0252 3

.0164 3

.0105

.0066 ;

.0041 3

.0025 3

.0015 3

.0009 3

.0005 3

.0003

.0002 :

.0001 3

.0000 3

.0000 3

.0000

.0000 ;

—. —.
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TABLEv. - Continued. SJ3LWCIOHS OF FIRSl!-ORIIERENERGY EQUATTO17 FOR

.

.

o
.1
.2
.3
.4

.5

.6

.7

.8

.9

::

::;
1.4

R
1.7

::;

2.0
2.1

:;
24

2.5

M
2.8
2.9

3.0
3.1
3.2
3.3
3.4

3s

;::
3.0
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6

::;
4.9

5.0
5.1
5.2
~

%

0.1479
.5096
.8138
1..O598
1.2464

1.3’728
1.4386
1.44.50
1.3949
1.2932

1.1477
.9682
.7662
.5543
.3450

.1495
-.0230
-.1663
-.2771
-.3550

-.4020
-.4220
-.4196
-.4003
-.3690

-.3303
‘.2882
‘.2456
-$?048
-.1673

-.1340
-.1o54
-.0814
-.0617
-.0458

-.0338
-.0241
-.0175
-.0122
-.0083

-.0056
-.0037
-.0024
-.0015
-.0010

-.0006
-.0004
-.0002
-.0001
.0000

.0000

.0000

.0000

.0000

MBITMRY RATESOF REATTRANSTER

[w, 0.72Jr, 1.40]

(c)The Y3nlCtionH’(q)

%2

0.0082
.0302
.0427
.0462
.0416

.0303

.0139
-.0055
‘.0259
-.0450

-.0609
-.0722
-.0778
-.0775
-.0717

-.0613
-.047’6
-.0321
‘.0163
-.0014

.0115

.0218

.0293

.0341

.0363

.0364

.0348

.0321

.0207

.0248

.0210

.0173

.0139

.0110

.0085

.0064

.0048

.0035

.0025

.0018

.0012

.0008

.0006

.0004

.0002

.0002

.0001

.0001

.0000

.0000

.0000

.0000

.0000

.0000

%

-0.4201
.0042
.3179
.5298
.6492

.6865

.6534

.5632

.4301

.2695

.0968
-.0731
-.2268
-.3538
-.4467

-.5020
-.5203
-.5051
-.4630
-.4018

-.3296
-.2542
-.1817
-.1169
-.0625

-.0198
.0114
.0323
.0444
.0496

.0497

.0465

.0412

.0353

.0291

.0233

.0181

.0137

.0102

.0074

.0053

.0037

.0025

.0017

.0012

.0008

.0005

.0003

.0001

.0001

.0000

.0000

.0000

.0000

5.5574
5.5512

4.9087
4.4931
3.9610
3.3197
25847

1.7794
9329
.0789

-.7475
-1.5121

-2.1847
-2.7412
-3.1653
-3.4497
-3.5959

-3.6132
-3S 176
-3.3294
-3.0715
-2.7669

-2.4374
-2.102 i
-1.7765
-1.4722
-1.1972

-.9558
-.7495
-.5775
-.4373
‘.3256

-.2384
‘.1716
‘.3.217
-.0844
-.0580

-.0392
-.0261
-.03.69
-.0110
-.0069

-.0044
-.0026
-.0016
-.0009
-.0005

-13003
-.0002
-.0001
.0000

%..s
5.3452
5.3370
5.2837
5.1497
4.9101

2.7665
1.9888

11652
.3306

-.4790
-1.2289
-1.8888

-2.4349
-2.8515
-3.1320
-3.2784
-3.3005

-3.2145
-3.0405
-2.8009
-2.5181
-2.2129

-1.9033
-1.6038
-1.3251
-1.0743
-.8550

-.6684
-5135
-3878
-.2879
-2102

-.1511
-.1067
-.0743
-.0506
-.0342

-.0227
-.0149
-.0095
-.0061
-.0038

-.0023
-.0014
-.0009
-.0005
-.0003.

-.0002
-.0001
.0000
.0000

— ..— —.— .—— —.
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TKEm v. - Continued. 8WllItOH8 OF KCEWT+HDER EREXKX M$IA!CZOH FOR

ARBmRmY RmE80FItwr TRAE8RR

[Pr, 0.72;T, 1.40j

(d)(kmtinued.The function H’ (n) TZti. . —., , ~

n % %.2 % %4 % H

o 0.2.002 0.0145 -0.2200 0.6985 10.1820
.1

a
.7308 .0608 .5214 8.6855 10A618

.2
a

12688 .0882
.3

1.0403 8.6008
1.4974 .0981

10.0325
1.3564 8.3886 9.7161

.4
:

1.7214 -0926 1.4932 8.0108 9.2336 2

1.8462
:2

.0745 1.4771 7.4464 8.3668 2
1.8787 .0472 13366 6.6905 7.3248

.7
2

1.8273 .0143 1.1015 5.7539 6.0700 2
1.7019 -.0205 .8017 4.6607 4.6490

:;
2

1.5142 -.0536 .4665 3.4470 3.1207 2

12780 -.0819 .1237 21577
H

1.5507 a
1.0086 -.1030 -.2021 .8433 .0071 2

1.2 .7223 -.1154 -.4901 -.4432 -1.4456 2
1.3 .4356 -.1186 -.7244 -L6506 -2.7499 2
1.4 S637 -.1133 -.8953 -27328 -3.8598 2

1.5 ‘.0803 -.1008 -.9989 -3.6519. -4.7432 2
1.6 -.2868 -.0829 -1.0374 -4.3809 -5,3830 2
1.7 ‘.4498 -.0618 -LO179 -4.9051 -5.7775 2
1.8 -.5671 -.0398 -.9513 -5.2224 -5.9390 2
1.9 -.6404 -.0187 -.8506 -5.3422 -5.8915 2

‘.6’738 .0001 -.7292 -5.2842 -5.6674
H

2
-.6735 .0157 -.5996 -5.0754

2.2 ‘.6467 .0275
-5.3047

-.4722 -4.7476 -4.8427 z
2.3 -.6007 .0355 -.3547 -4.3343 -4.3198 2
2.4 -.5421 .0401 -.2522 -3.8683 -3.7703 2

2.5 -.4770 .0417 -.1673 -33791
2.6 -.4102

-3.2234
.0409 -.1oo3 -2.8920 -2.7019 :

2.7 -3453 .0383 -.0503 -2.4271 -22219 2
2.8 -.2848 .0347 -.0150 -3..9985 -1.7939 2
2.9 -2?305 .0304 .0081 -L6157 -1.4225 2

3.0 -.1832 .0258 .0216 -1.2829 -1.1084 2
3.1 -.1430 .0215 .0282 -~:.:; -.8490 2

-2097 .0174 .0298
2:$

-.6394
-.0827

2
.0138 .0284 -.5787 -.4737 2

3.4 -.0613 .0107 .0253 -.4292 -.3452 2

-.0448
R

s)::: .0214 -3131 -.2476
-.0321 .0174 -.2245 -.1746 :

3.7 -.0227 .0044 .0136 -.1587 -.1214
3.8 -.0157 .0031 .0103 -.1096 -.0826 :
39 -.0107 .0022 .0076 -.0750 -.0556 2

4.0 -.0072 .0015 .0056 -.0506 -.0369 2
4.3. -.0048 .0010 .0039 -.0336 -.0242 a

-Q 031
::

.0007 .0027 -.0217 -.0154 2
-s020 .0004 .0018 -.0140 -.0098 2

4.4 -.0012 .0002 .0012 -.0088 -.0061 2

-.0008 .0001 .0008
:: -.0005

-.0055 -.0038
.0001 .0005 -.0034 -.0023 ;

4.7 -.0003 .0000 .0003 -.0021 -.0014 2
4.8 -.0002 .0000 .0001 -.0012 -.0008 2
4s -.0001 .0000 .0000 -DO07 -.0004 2

.0000 .0000 .0000
u .0000

-.0003 -.0002
.0000 .0000 -.0002 -.0001 :

5-2 .0000 .0000 .0000 -.0001 -.0001 a
5.3 .0000 .0000 .0000 .0000 .0000 2

.
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o

2
.3
.4

::
.7

1.5

1.8
1.9

g.:

2>
2.3
2.4

2.7
2.8
2.9

H
3.2
3.3
3.4

3.5

R
3.8
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

5.0
5.1
5.2
5.3

TABLEv. - Continued. .%JIJETONS

ARBImmYRAm8

OF KDWWWER ENERGYEQIA!DONFOR

oFHEmmAmFKR

[Fr,0.72Jy, 1.40]

(c) Concluded.The function H’(II) =@K&=’

%1

02042
.9112
1.453,e
3..8353
2.0745

21837
2.1783
2.0743
3..887S
1.6362

1.3367
1.0079
.6682
.3357
.0267

-.2454
-.4707
-.6437
-.7632
-.8318

‘.8552
-.8409
-.7976
-.7336
-i6570

-.5743
-.4911
-.4115
-.3380
‘.2726

‘.2159
-.1680
‘.1285
‘.0967
-.0716

-.0422
-.0373
-.0263
-.0182
‘.0124

‘.0083
-.0055
-.0035
-.0023
-.0014

-.0009
-.0005
-.0003
-.0002
-.0001

.0000

.0000

.0000

.0000

0.0%95 0.0899
.0884 1.1008
.1292 &7774
.1446 2.1532
.1380 2.2698

.1139 21731

.0774 19111

.0336 1.5308
-.0125 1.0768
-.0562 .5900

-.0937 .1064
-.1222 -.3431
-.1399 -.7340
-.1463 -L0489
-.1422 -L2773

‘.1292 -1.4162
-.1095 -1.4697
-.0857 -1.4474
-.0603 -1.3635
-.03561 -1.2344

.030’7

.0375

.0403

.0405

.0387

.0355

.0314

.0269

.0225

.0183

.0146

.0114

.0086

.0064

.0047

.0033

.0023

.0016

.0011

.0007

.0004

.0002

-::; s);:

-.7377
-.5792
-.4383

-.3187
-.2214
-.1454
-.0887
‘.0481

-.0208
-.0034
.0065
.0114
.0130

.0124

.0109

.0090

.0070

.0053

.0039

.0028

.0019

.0013

.0009

.0002 .0006

.0002 .0004

.0001 .0002

.0001 .0001

.0000 .0000

.0000 .0000

.0000 .0000

.0000 .0000

.0000 .0000

%4

11.3879
13..3667
13..2306
10.8975
TO.3188

9.4767
8S 784
7.0529
5.5460
3.9150

2.2247
.5423

-1.0666
-2.5421
-3.8336

-4.9022
-5.7230
-6.2858
-6.5948
-6.6674

-65313
-6Z221
-5.7794
-5.2441
-4.6551

-4.0470
-3.4489
-28833
-23660
-1.9066

-L5094
-L1745
-.8984
-.6759
-.5003

-.3642
-.2607
-.1839
-.1267
-.0865

-.0583
-.0387
-.0249
-.0160
-.0101

‘.0063
‘.0038
-.0023
-.0013
-.0009

-.0006
-.0004
-.0002
.0001

%5

14.5535
14.5183
14.2961
13.7641
12.8617

11.5807
9.9538
8.0448
y;::
.

1.5156
-.6085

-2.5599
::.2; ;;

.

-6.7821
-7.5412
-7.9725
-8.0995
-7.9594

-7.5980
-7.0666
-6.4171
-5.6987
-4.9552

-4.2229
-3.5301
-2.8963
-2.3337
-1.8474

-1.4374
-1.0996
-.8272
-.6123
-.4460

-.3196
-.2253
-.1566
-.1064
-.0715

‘.0476
-.0311
-.0198
-.0125
-.0078

-.0048
-.0029
-.0018
-.0010
-.0006

-.0003
-.0001
.0000
.0000

.— ——— -—— .—. ——
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-E VI. - ASYMPTOTIC VALUES

APPEARING IN EXPRESSION FOR

DISPLACEMENT TEICKNESS

[H, 0.72; y, 1.9

+“
%2 .0126 -.1230

+Ft=
%!2 I .0680 .0236

%3II-.7794 -2.3438

BN4 -16.0112 -23.4228

WI -13.81161-24.7052

N=3

-7.9898

-.2688

-10.6824

-3.8104

-.0476

-3.6564

-.0348

-3.8602

-29.1598

-33.6536

—_ —
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1

.,

0
.1
.2
.3
.4

.5

.6

.?
i
.9

1.0

1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2,1
2.2
2.3
24

K12

0::;:3

.0060

.0123

.0196

.0278

.0357

.0431

.0494

.0545

.0581

.0601

.0606

.0556

.0578

.6548

.0512

.0472

.0430

.0509

.0351

.0316

.0206

.0260

.0239

TABLE VII. - SOLUTION OF FIRST CIRDEFiMOMENTUM EQUATION

rw. 1: V. 1.401

Ei2

O::;:;

.0544

.0701

.c’f87

.0808

.077’>

.0692

.0573

.0 .434

.0261

.01.?6
-.00I!J
-.0143
-.0:.54

-.0334
-.03 ti[j
-.0412
-.0414
-.0>9G

-.0366
-.0326
-.0200
-.C234
-.0190

,-–, —., ,—. . .

r3;2 n ‘%2

O:;;;:
E

0.0222
.0209

.1941 2.7

.1203
.0199

2.s .0191
.0521 2.9 .0136

-.0085 .0102
-.0599 ::?
-.1010

.0180
3.2 ,0170

-.l,30t3 3.3 .01’{7’
-.1469 3.4 .0176

-.1555 3.5
-.1516

.0175
3.6 .0175

-.1385 3.7 .0175
-.1183 3.6 .0175
_.0933 5.9 ,0175

-.0660 4.0 .0175
-.038’( 4.1
-.0135

.0175
4.2 .01 -75

.0080 4.3 .0175

.()~49 4.4 .0175

.0367 4.5 .0175

.0437

.0464
,0456
.04 .23

Sip

-0.0150
-.0115
-.0087
-.0063
-.0045

-. 0032
-.0022
-.0014
-.0009
-.0006

-.UQ04
-.0002
-.0001
-.0001
.0000

.() 000

.Ooou

.iJooi J

.0000

.0000

.0000

,0117
.0085
.0060
.0041
.0027

.0018

.0011.

.0007

.0004

.0005

.0002

.0001

.0000

.0000
,orJoo

.0000
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(a) Airfoil with adversepressuregradient.
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Distance from leading edge, x

(b)Airfoilwith favorablepressuregradient.

Figure 4. - Airfoil shapes used in examples.
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Figure 5. - External velocity and temperature distributions on
airfoils used for examples. &, 3.
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Figure 6. - Local sldn friction as a function of distance from leadlng edge
I&, 3.
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Figure 7. - Average friction drag as a function of distance
edge. Q, 3.
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Figure 8. - Averagefrictiondrag coefficientas a functionof distance
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Figure 9. - Heat transfer as a function of d.lstancefrom leading
edge. M=, 3.

..- .—— —



64 NACA TN 3028

.854

.852

.850

k=

;
s .848

:

~

o
v
al
h .846

g
(a) Adverse pressure ~dient.

$
.&48

‘a’
~

.846

.644

.842
0 .2 .4 .6 .8 1.0

Distance from leading edge, x
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Figure 10. - Temperaturerecovery factor as a function of distance
from leading edge. M=, 3.
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Figure Il. - Velocityprofiles. ~, 3; x, 1.
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